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SUMMARY

The ability to make dynamic shear stress measurements is an

important need in both laboratory and fielding applications. In a

preliminary study, the feasibility of developing a piezoelectric shear

stress gage that would be insensitive to compressive stresses was

demonstrated. The objectives of the present work were to perform

detailed analyses to understand the response of such a gage, perform

laboratory calibration experiments, and check cross-axis shear effects,

all as an intermediate step for developing a gage package for field

use. Because the piezoelectric constants are important in determining

the optimal gage orientation, a related objective was to verify the

constants reported in the literature.

To meet these objectives, theoretical analyses and laboratory

experiments were performed. Impact experiments, designed to provide

temporal separation between the compression and shear response of the

gage, were performed on 163*- and 165.5°-rotated Y-cut Lithium Niobate

(LiNbO3 ) gages. The 1630 Y-cut orientation was chosen because it is the

optimal orientation for shear-stress-induced response based on the

existing set of piezoelectric constants. The 165.50 Y-cut orientation

is a specific direction and provides a uniaxial strain response under

compression-only loading.

The experimental results showed that the 1630 Y-cut orientation is

considerably more sensitive to shear loading than to compressive

loading. Also, the 1630 Y-cut orientation appears to be insensitive to

cross-axis shear. The experimental results suggested that impact

misalignment (or tilt) and crystalline anisotropy effects need to be

*taken into account in analyzing the experimental data. As expected, the

165.50 Y-cut orientation showed a considerably larger response to

compression than did the 1630 Y-cut orientation. The large current rise

that occurs following the initial jump in current suggests the need for
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modeling the effects of electromechanical coupling. Some of the experi-

mental results shoved scatter, which could be attributed to variations

in tilt between experiments, minor variations in the orientations of the

crystals, or both.

In analyzing the gage response, we examined only the initial jump

in current to avoid complexity due to electromechanical coupling.

Quantitative methods were developed to include crystalline aniostropy

and impact tilt contributions because these were determined to be

significant. Detailed comparisons between the experimental results and

theoretical predictions were attempted. For the shear loading, the

agreement between theory and experiment is good (within 3 percent). on

the other hand, for compression loading theory and experiment agree only

to within 10 to 50 percent; not all the differences have been resolved.

Two potential sources of errors that need to be examined in future

studies are the accuracy limits on the value of the piezoelectric con-

stant e2 2 and the uncertainty in the orientation of the rotated-cut

crystals. Also, the value of the elastic constant C D needs to be
12

established accurately. In future studies an accuracy to within * 0.10

is required. A detailed electrostatic analysis for rotated-cut crystals

has been presented. To apply this analysis to experimental data

requires solutions for the two-dimensional electrostatic problem.

Unless this analysis is carefully applied to data on rotated-cut

crystals, interpretations based on these data are suspect. Theoretical

expressions describing the effects of electromechanical coupling under

combined compression and shear loading are derived; however, these

expressions were not used in analyzing the data. This latter task

requires further numerical effort.

The present work has provided a detailed examination of the shear

gage concept, and on the basis of the work described in this report, we

believe that the development of the shear stress gage is a realistic

undertaking. An important conclusion is that improved reconciliation

between theory and experiment is necessary before developing a field

N gage, and this task will require further theoretical analyses and more

* V



precise experimental work. Specific steps for future work are outlined

in this report. An important change from the earlier conclusions of the

feasibility study is the redefinition of the criteria for the optimal

gage orientation. The sensitivity of the gage output to compression

loading varies markedly with small deviations of the crystal orientation

from the optimum orientation for measuring shear stress. This behavior,

combined with practiral limitations to the accuracy with which the

crystal orientation can be determined, suggests that the crystal

orientation to be used in a field gage should be chosen as a compromise

between minimizing its compression sensitivity and accommodating the

practical constraints of crystal orientation accuracy.
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CONVERSION TABLE

conversion factors for U.S. Customary to metric (SI) units of measurement

MULTIPLY BY ~rTO GET

TO GET BY 4DIVIDE

angstrom 1.000 000 x E -10 meters (m)

atmosphere inormal) 1 013 25 X E .2 kilo poscal IkPaI

bar 1 000 000 X E * 2 kilo pascal (kPa)
2

ban1 000O000X E -28 meters (ml

British thermal unit ithermochemicali .5 50XE. joule (J)

calorie itliermochemical) 4I 8 0 jue(1

,at ithermochemical) cm 4 184 000 X E -2 mega joule/m 2 MJ/m 
2
)

curie 3 -00 00n X E * 1 -giga becquerel (G~qI

degree tangle,) 4 2 -2 radian (rad)

degree Fahrenheit W t f . 459 671/1 8 degree kelvin (K)

electron volt 1 602 19 X E -19 joule (J)1

erg 1. 000 000 x E -7 joule (J1

erg/second 1.000 000 XE -7watt (W)

foot 3 04 000 X E -1 meter 1m)

foot-poind-force 13508joule IJ)
33

gallon WIS liquidi 3 785 412 X E -3 meter
3 

(ml

inch 2 540000 XE -2 meter (ml

jerk . 1 0i00 000 X E .9 joule (J)

joule/kilogram (JAC) (radiation dose

absorbed) 1.000 000 Gray (Gy)

/ .kilotons 4 193 terajles

kip 11000 h1f 4 448 222 X E * 3 newton IN)

kip.'nch 2 ksil 6 194 757 X E * 3 kilo pascal (tuPa)

ktap newton -secand/

1 000 000 X E -2 (N-a/in
2
)

micron . 1 000 000 X E -A, meter (m)

mil 2 540 000 X E -5 meter iml

mile linternational, 1 609 344 X E * 3 meter mln

ounce 2 834 952 X E -2 kilogram (kg)

pound-force lb- a~oirulucpts 4.448 222 newton (N)

pound-force in 1 U 1 48 X E -1 newton-meter INn,)

-pound -force,uich . 1 751 266 X E '2 newton meter Nmi

pound -force /foot 4r 798 026 X E -2 .kilo pascal (kPaI

pound -fnrce,/inch- ifpsi 6 994 757 kilo pascal (kPal

pound-mass ilbm ai irdupois, 4 535 924 X E -1 kilogram ikg)

pound -mass -foot 2 momcnt of inertia) kilogram -mete r
4 214 011 X E -2 0 2

poun -mss.Iootkilogram 'meter
3

1 601 946 XE *1 ikg/,m
3
1

* .rad iradiaticn do". absorbed, 1 000 000 X E -2 -- Gray IGv)

roentgen coulomb /kilogram

%2 579 760 X E -4 Ilg

shalic 1 000i 000o X E -8 second (sI

slug 1.459 390 X E * 1 kilogram (4)

torr imm Hg, 0*( 1. 333 22 X E -1 kilo pascal Ik.PsI

*th bcquerel tBq is Lhe SI unit of radioactivity; 1 Bq I event/s
-- The Gray iG% o is the $1 unit of absor-bed radiation.
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SECTION 1

INTRODUCTION

1.1 BACKGROUND

The measurement of dynamic stresses and loads is an important

aspect of the DNA experimental effort. Many different types of

transducers have been developed and are in use in both laboratory and

field programs. Proceedings of a recent DNA conference describe the

- 1
status of instrumentation currently in use. The development of a shear

stress transducer for dynamic measurements is recognized as an important

need by workers associated with dynamic load measurements.

In 1978, we proposed the idea of developing a piezoelectric shear

stress gage that would be insensitive to compressive stresses. A small

effort was undertaken to determine the feasibility of developing such a

gage.2 Theoretical conditions for developing the desired gage were

formulated and quantified, and idealized mathematical relations were

derived for using this gage. The analytic work indicated that of the

various orientations in alpha quartz and lithium niobate (LiNbO3 ) only

the 163°-rotated Y-cut orientation appeared to be suitable for use as a

shear gage. Experiments were performed to confirm that the gage had a

high sensitivity to shear stresses and a low sensitivity to compressive

stresses. Although this work was mostly qualitative, it demonstrated

the theoretical and experimental feasiability of developing a

piezoelectric shear gage. For readers not familiar with the feasibility

study, 2 a synopsis of the past work is presented in Appendix A. A brief

: background pertinent to the feasibility study is also included in this

synopsis.

We are using the Institute of Radio Engineers (IRE) nomenclature,
which is recommended for piezoelectric crystals. Rotated Y-cut

orientation denotes rotation about the crystallographic X-axis.

oretto .rystallographic



1.2 OBJECTIVES AND APPROACH

The objectives of the present effort* were to perform more detailed

theoretical calculations to better understand the gage response, perform

laboratory experiments to calibrate both the compression and shear res-

ponse of the gage, check cross-axis shear effects, estimate uncertain-

ties in gage measurements, and suggest guidelines for developing a gage

package for field use. The present work was envisioned as a detailed

examination of the shear gage concept and an intermediate step toward

developing a field gage package. Because of the extensive characteriza-

tion of LiNbO 3 both in ultrasonics 4, and in compressive shock wave

experiments, 6 no serious problems were anticipated. t Although the

objectives of these earlier ultrasonic and shock wave measurements were

different from our current objectives, we felt that the fundamental

constants of Li~bO3 were sufficiently well known to permit a straight-

forward calibration. The experimental effort was to provide a quantita-

tive check for our initial Ideas. As discovered during our work, not

all of fundamental material constants (elastic and piezoelectric) are

known with sufficient accuracy.

For our laboratory experiments, we chose two orientations: 1630

Y-cut and 165.50 Y-cut. The 1630 Y-cut was chosen as the optimal

direction for a shear stress gage. The 165.50 Y-cut orientation was

chosen because It is a "specific direction"t and theoretical analysis is

'a easier for this orientation. The 165.50 Y-cut orientation was also

intended to confirm the piezoelectric constants reported in the

literature. 4-6 We felt that this conformation would be useful because

*Discussions with AFW L personnel were helpful in determining the field

requirements for a shear stress gage.

t As described in Reference 6, rotated-cut gage data under compression
had also been analyzed.

tA direction in which propagated waves are purely longitudinal or
purely transverse is a specific direction. Also see Appendix B.

2
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the optimal orientation for the shear gage is sensitive to the value of

these constants.

The theoretical work was intended to extend the analysis presented

4. in our feasibility study to provide sufficiently accurate quantitative

interpretation of our experimental data. A secondary objective of the

theoretical effort was to identify additional analyses that might be

important for the subsequent effort of developing a field gage package.

The approach we used in this project had one main theme: to work

out as many of the quantitative details about the gage response as

possible to minimize ambiguities and difficulties with data

interpretation once the gage is used in field experiments. In most

applications the gage will be subjected to complex loading. This fact,

coupled with the fact that compressive loads are considerably higher

than shear loads in most applications, requires that the gage response

be well understood. Hence, it is necessary that in well-defined

laboratory experiments the gage response be modeled quantitatively.

The remainder of the report consists of four sections and several

appendices. Readers desiring an overview of this work should read

Appendix A, the first few pages of Section 2, the Summary at the end of

Section 3, Section 4.4, and Section 5. The experimental work is

described in Section 3 and Appendix F. Readers interested in the

theoretical developments and analysis should read Sections 2 and 4 and

Appendices B, C, D, and E.

3
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SECTION 2

THEORETICAL DEVELOPMENTS

In this section we present theoretical analyses describing

compression and shear wave propagation in piezoelectric crystals and

develop criteria for selecting the optimal gage design. The first

theoretical analysis is an idealized calculation that indicates the

requirements for an ideal shear gage. After identifying these

requirements, we present two, more general, theoretical analyses that

consider conditions that are closer to those for a real shear gage.

Although these two analyses have not been fully used in the present work

because of their complexity, they provide considerable insight into the

gage response. Numerical methods to implement these general analyses

should be considered in future studies.

Since Nielson's initial derivation of the expressions for the
7

short-circuit current for a quartz gage, Graham and others at Sandia

Laboratories have performed an extensive series of studies on the

response of piezoelectric gages subjected to dynamic uniaxial strain
8-13

loading. Their papers demonstrate the extensive developments in

both theory and experiment over the past 20 years. In contrast

to a-quartz the behavior of LiNbO3 is considerably more complex and

requires a careful understanding of the electromechanical coupling,

which is discussed in Section 3 of Reference 6. The papers by Chen et

al. 14 and Lawrence and Davison1 5 are important contributions to this

problem.

Despite the many developments over the past two decades, two

features are common to all the studies cited above: the condition of

iiaxial strain and the assumption of coincidence of the electric fields

with the gage thickness direction (also the wave propagation direction).

These restrictions, although reasonable for the earlier work, are not

valid for analyzing the shear gage response.

4
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All the theoretical analyses presented here assume that the gage

*material is elastic and has zero conductivity. In addition, all the

dependent variables are assumed to have a one-dimensional variation.

This last assumption is questionable for the electrical variables in

certain situations, as discussed later.

2.1 ELASTIC-DIELECTRIC ANALYSIS FOR COMBINED COMPRESSION AND SHEAR
LOADING

a Expressions describing the response of an idealized gage are

obtained by extending the elastic-dielectric analysis for uniaxial

strain1 6 to combined compression and shear loading. We make the

following assumptions: (1) the gage thickness direction is a specific

direction, (2) th'qre is no electromechanical coupling, (3) finite strain

and nonlinear electrical effects can be neglected, (4) the electrical

permittivity tensor has only diagonal elements *and their variations

with strain can be neglected, and (5) the electrical fields are parallel

to the gage thickness direction.

With these assumptions, we consider the propagation of a

compression and a shear wave through the gage as shown in Figure 1.

Region I is unstressed, Region 11 has undergone compressive deformation,

and Region III has undergone compressive and shear deformation. The two

faces of the gage are short-circuited through a low resistance to

measure the current due to gage deformation. The thicknesses of each of

these regions and the electrical variables for the three regions are

indicated in Figure 1. Because there is no free charge (i.e., the gage
a 41

has zero conductivity), the gradient of the displacement field n is

zero. 1

This assumption although not explicitly stated, has been made in past
work.

5
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where X2 is the coordinate through the gage thickness; the gage is

assumed to be infinite along the other two directions. Equation (2-1)

shows that D is only a function of time t, and at any instant we can

write

(1)D2 = (2)D2  (3)D2 (2-2)

Writing this in terms of polarization, P, and electric field, E, we have

S(1)E2 (2) (2)E2 + (2 )p2  (3)e (3)E2 + (
3 )2 (2-3)

(i) ==+ P 23

where Me is the permittivity in the ith region. The short-circuit

- condition is given by
.-" EdX2 = (I) E2 I + (2) E22 + (3) E2I = 0 (2-4)

o 2 2 2 1 + 2 2 + 3 (24

At any instant the thickness X1, 12, 13 can be expressed in terms of the

total thickness I and the wave velocities:

M..E (1 - U t) + (2)E (U - U )t + (3 )E U t = 0 (2-5)

where the subscripts "c" and "s" refer to the compression and the shear

wave, respectively. Because we are considering infinitesimal strains,

we take (OF = (2)F = (3) and use equation (2-5) with equation (2-3) to

eliminate (2)E2 and (3)E We can then write

MD= 2 P2(U - U )t + P2UtJ (2-6)
2 s c2

The current in the external circuit is written as

i AdD2  A (2)PU (3  - (i =A 2= + US( P2 P2)] (2-7)

6

%* V



(3)E2  WE E

(3) (2

Q3 -I 2 - -£

_______________ Q _ _ _ _ _ _ _ _

Figure 1. Compression and shear wave fronts in a piezoelectric disk.
[The wave velocities UC and Us and the electrical variables
in the three regions are shown. The gage thickness direction
is X2 (or X ) as explained in the text. The polarization
in region I is zero.]
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where A is the area of the electrode. In equation (2-7), ('P 2 is the

polarization due to the compressive wave only, but (3 )p2 is the

polarization due to both waves. Rewriting equation (2-7), we have

%A

--i (P U + P U] (2-8)
Z cc s s

The polarization is related to the mechanical strains (in the gage)

through the relation
1 8

Pi = eujk "jk (2-9)

If X2 is the wave propagation direction and the direction of shear

loading is X 3 , we can rewrite equation (2-9), in the matrix notation, in

Region III as

-)P = Pc + Ps e 2 + e 4 (2-10)

In equation (2-10) and throughout the report, we follow the commonly

used convention for equivalence of the subscripts in matrix and tensor

notation:

Piezoelectric Constant

Stress Convention Strain Convention Convention (i - I to 3)

a , al I I eI 1I e l e l ll
-a E 222

2 22 2 22 e12 e122

a3 3a E 3 E 33 e 33 ei3 3a:-a -a3 e2 E 2 ei33

4 a23 w a32 E4 2 423 ' 2 E32 e14  e123 = e132

5 a13 = a31 E5 2 E13 - 2 E31 e15 eil3 = ei31
a 6 a12 = a 21 f 6 2 E12 = 2 c21 ei6 e112 - ei21

Substituting equation (2-10) into equation (2-8), we can write

A1
A [Uce 2 2 2 + U e 2 4 E4  (2-11)

8
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Equation (2-11) can be used to discuss the criteria for selecting a gage

subjected to combined compression and shear loading. For a gage

sensitive only to normal strains, e24 should be zero. In contrast, an

*ideal shear gage should have e 22 "0. To satisfy these conditions, we

need to consider rotated cuts for the crystals.

We choose the following notation to avoid confusion with the axes

used in the crystallographic system: XC2 defines the direction of wave

propagation, X 3 is the direction of the imposed shear motion, and X1 is

chosen such that Xi-axes form a right-handed coordinate system. Hence,

an important requirement for an ideal shear gage is that e22 = C) ande2

be large. For the most general case, we have shear along the X,- and 3

axes. For an ideal gage there should be no cross-axis shear effect and

e26 - 0. For the situation shown in Figure 1, the current output can

then be uniquely related to the shear strain in the gage. The use of

this idealized gage would be analogous to the piezoelectric compression

gage.

Having established the main criterion for the shear gage, we now

examine the various assumptions made in deriving equation (2-11). Of

the five assumptions listed earlier, the most important one is the need
19for the wave propagation direction to be a specific direction with

regard to both compression and shear waves (see Appendix 3). If the

direction of wave propagation is not a specific direction, the various

strains (or stresses) in the gage will be coupled, all three strains

(E', E4, E;,) will be produced, and the polarization can have several

contributions.

Thus, the two most important criteria for the shear gage are as

follows: (1) the electrical polarization is caused only by the shear

strain (or stress) of interest and (2) the gage thickness direction is a

specific direction. In the earlier feasibility study,' these criteria

q were used to examine both a-quartz and lithium niobate crystals. Only

the 1630 Y-cut orientation of UiNb03 approached optimal conditions (see

Appendix D). For this orientation, using the constants cited in the

literature, 4-6 we find that the ratio e2 4/e;2 is 470. Although this

9



direction is not a specific direction, it is close to the specific

direction (165.50 Y-cut, see Appendix B). The particle motion, for wave

propagation along the 1630 Y-cut in LiNbO3 , is along the 161.70 Y-cut

direction. Hence, the mechanical coupling of the strains due to crystal

anisotropy was expected to be small.

Note that the values cited above were based on the values for

elastic constants (Cij) and piezoelectric constants (ei k) for LiNbO 3I I

'-C cited in the literature. The extreme sensitivity of the ratio e 2 4 /e 2 2

to the crystal orientation requires that both the eijk values and the

crystal orientation be known very accurately. During the work described

in this report, we discovered that the values cited in the literature

were incorrect. We have reanalyzed past shock wave data for LiNbO3
6 to

determine the "correct" values (see Appendix C).
t

In the present work we also found that small deviations from the

specific direction and the effects of impact tilt need to be included

for analysis of experimental data. Analytic methods to incorporate

these effects are described in Appendices B and E.

In the next two subsections, we present more general theoretical

developments that are closer to the conditions of the experiments.

2.2 ELASTIC-DIELECTRIC ANALYSIS FOR A ROTATED-CUT GAGE

In this subsection, we restrict ourselves to only two

assumptions: (1) electromechanical coupling is not considered and (2)

finite strain and nonlinear electrical effects are neglected. The first

assumption is relaxed in the next subsection. Eliminating the second

assumption does not pose any conceptual problems, but makes the analysis

The ratio e24 /e22 for 1620 Y~cut is -28.8 and the ratio e2 4 /e2 2 for
1640 Y-cut is 25.9. Note, e24 is nearly constant, but the e22 value
changes dramatically with or entation.

tThis question has not been resolved satisfactorily.
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more complicated. For the small strains considered in our work, the

second assumption is reasonable.

Because we are not considering wave propagation in a specific

direction, each of the Regions II and III in Figure 1 will have both

compressive and shear deformations. In general, there will be three

regions; however, to simplify the algebra, we initially consider only

two regions: an unstressed region, Region I, and a region undergoing

both compressive and shear deformation, Region II. Thus, Region II in

this analysis is similar to Region III of Figure I. Extending this

analysis to three regions is straightforward and the final expressions

are presented. The two-region situation arises when a quasi-

longitudinal wave propagates in the crystal; this situation is

encountered in many of our experiments described in Section 3. Below we

derive the equations for a rotated Y-cut crystal of LiNbO 3 with the

X2 -axis defined to be the wave propagation direction in Figure 1.

Proceeding as before, the absenc of free charge in the crystal

provides

. 0 ; MD' = (2) Dj (2-12)

i0 ;2X_ 22

Thus, D2 is only a function of time. Writing equation (2-12) in terms

of and t does not produce equation (2-3) as before because for rotated

Y-cut LiNbO3 crystals the permittivity tensor has the form

il1  0 0

, 0 Cos2 2 sin29
=2 0 + sin2Or33  2 (r33 - r2 2 ) (2-13)

sin2 Cos2 3 2 2

2 ( 33 - r22) + sin r22r

!i~~. .. . ...... o o .° -• -. °. . .. .. .. ........ .
,- , .,'.. ,-.-,... , ....,. --..-'.-..-.v -.......-.-.... ..v ..--- '-.-... ., ,. .-.. '.., ...,., , ,.,..' '.,"..,...,,,...



where 0 is the angle of rotation about the Xl-axis. It is the non-

diagonal form of the permittivity tensor that Introduces most of the

complexities in the analysis of these rotated-cut crystals. Using the

form of E in equation (2-13), we can rewrite equation (2-12) as

p + ( ) 2 (1)2E + (1)2E3 Ej - (2)p + (2)E22 (2)E (2-14)

+ (2) (2)

23 3

In the unstressed region, the polarization (1)P2 is zero. In accordance

with assumption (2) above, we neglect changes in the permittivity due to

small strains. The continuity of the tangential component of the E

field across the wave front gives

( 3)E- (2)Ej (2-15)

Equation (2-14) can now be solved to give
(2)(2

(2)E (1)E ( 2 I22.'.E. - 2 (2-16)

2 2.

The short-circuit condition across the electrodes on the gage faces is

written as

0 E' dX' () E' j + (2)E, 1 2 0 (2-17)

..

Solving equations (2-16) and (2-17) gives
; (2)p

2)E 2(2-18a)
2 22

.1 12
4,%.
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In the small strain approximation, we are neglecting particle velocity
I I

u2 in comparison with the wave velocity Uc, and we can write

2' =' - U't and V" = U't (2-19)
c2 c

Here the subscript "c" refers to the quasi-longitudinal wave. From

equation (2-17) we see that the electric fields depend on the external

circuit condition; equation (2-19) shows that they are strongly time-

dependent. Combining equations (2-18) and (2-19), we can write

= c + E2 1)E; (2-20)
2 2' 3 3

Note, in contrast to equation (2-6), the displacement field in the gage

thickness direction depends on the electric field along the X3 -

direction. The current in the external circuit is the displacement

current, which is given by

dD
$ i = A = A 2 U' + 2'E' E] (2-21)

dt V c 23 3

where the dot denotes a time derivative. We write the expression for

current as

(2) p'AU'
i c I, + iE  (2-22)

where the current iE = A E 3  For a rotated Y-cut LiNbO 3 crystal

the only nonzero strain components are E', E', and E'. Hence, the
,2

expression for polarization along the X2-direction is given by

(2)-, = e' E; + e' E' + e2 E' (2-23)
2 2 2 4 4 266

It can be shown that, for a rotated Y-cut LiNbO3 crystal, the constant

..e. e = 0 Hence, the last term on the right side of equation (2-23) is..'. e26 •

zero. Substituting equation (2-23) in (2-22) produces

13
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AU'
C

i I [ei2 E. + e 4 E] +E (2-24)

From equation (2-24) we see that, in the approximation of no electro-

mechanical coupling, except for IE, the current produced by wave

propagation in a nonspecific direction is similar in form to the

previous derivation in Section 2.2. The simpler relationship holds for

, Y-cut LiNbO3 crystals; the term iE is zero because c' only has diagonalii
terms.

To determine the effect of (2)i, on the current in equation (2-21)

is an involved problem.* It will depend on the electrical boundary

condition along the X3-direction. For a truly infinite disk, this term

will not contribute. However, for a finite disk, the shunted and

shorted gages may show markedly different behavior. Further analysis of

this problem requires a two-dimensional electrostatic analysis and is

not attempted here. In future work this issue needs to be carefully

4,-. examined.

For Y-cut and rotated Y-cut LiNbO 3 crystals there is an additional

factor influencing (2), and iE . For these orientations there is also a

nonzero polarization in the X3-direction, even for compression-only

*, loading. This polarization may alter the electrical boundary

condition. Thus its magnitude is also needed to solve the electrostatic

problem to determine (2) .

If we consider three regions t as shown in Figure 1, we can write

X! U't= ; X = (U' - U')t U't (2-25)

cc s ' s

Discussions with Mr. R. A. Graham of Sandia National Laboratory on this
%. problem have been helpful.

% tThe most general case would have four regions because there will be
two quasi-shear waves. For the present problem, one quasi-shear wave

is sufficient.
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Here, Uc and Us are the wave velocities of the quasi-longitudinal and

quasi-shear wave, respectively. Proceeding as before, the displacement

field can be written as

(1)O 1- [(2)p(3p )

1 (U - U1)t + (3) u'ti + E' (')Ej (2-26)
2 ' 2 c s s 3

Comparing equations (2-6) and (2-26) we see that the two are similar

except for the E3 term. The current in the external circuit can be

written as

dDi AU 2 p [(
3 )p1 - (2)P2]gs + V e2E

dt 2 (2-27)

~A

T_ U' + P s U'] + iE

The values of iE in equations (2-22) and (2-27) will be different

because the polarization fields in the X3 -direction will be different in

the two cases.

2.3 LINEAR COUPLED RESPONSE OF A ROTATED-CUT GAGE TO COMBINED

COMPRESSION AND SHEAR LOADING

We now present the theoretical formalism for including electro-

mechanical coupling in the gage output analysis. The theoretical

developments for compression-only loading and without the complexity

introduced by rotated cuts can be found in the paper by Chen et al. 1 4

However, these authors include finite strain and more general external

electrical circuit conditions in their work.

The experimental situation analyzed here is comparable to that

shown in Figure 1. The approach to solving the coupled problem is

similar to that for other wave propagation problems. The constitutive

equation in combination with the governing equations yields a wave

equation, which is then solved to provide the wave profiles at different

positions in the sample. Except for a linear elastic solid, a numerical

15
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method is needed to obtain the wave profiles. In the coupled problem,

the constitutive equation has both mechanical and electrical terms.

Hence, the external circuit conditions can influence the wave profiles.

A comprehensive discussion of this topic is presented in an article by

* Thurston.
20

For the one-dimensional problem of interest, we can write the

governing equations as
20

/ " __o

6x'i) 60k t ) l (2-28)

4

(%C(2 X (2-29)

(uX2

!i 6u 2 ~ (2-30)

'po , l 6X (2-31)

Here o is the initial density, ui is the particle velocity in the X

direction, and e is the specific Internal energy. We are using the

small strain approximation and considering stresses and strains to be

'. " positive in tension.

By choosing the strain ( ij) and the displacement field (Dm) as

independent variables, we can write the constitutive equation for a

linear piezoelectric solid in the matrix notation [see the matrix and

tensor notation following equation (2-10)]I!:

The constitutive equations are in the X i system unlike the governing
equations (2-28) through (2-31).

16
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ri1

a a % m - h D (2-32)

E -h E +B D (2-33)
i a aX ii j

where

BE . (1E iTk) (2-34)
ij Dj 1 POi

and CDj are the elastic stiffness constants in a constant field. We

assume isentropic deformation and recognize that the Maxwell relations

can be written as

A4. j) i (2-35)

Further details about the constitutive equations can be found in Chapter

4 of Mason's book21 or Section 14 of Thurston's review article.20 The

constitutive equations clearly show the dependence of the elastic moduli

and, hence, the wave velocities on the electrical variables. In

Appendix B, the relation between CDj and C~j is derived.

In the absence of electromechanical coupling, equations (2-28)

through (2-31) in conjunction with the constitutive equations can be

solved for a particular initial condition using a generalized one-

dimensional wave propagation program.22 Such calculations are described

in Appendix B. For the electromechanical problem we need to specify the

external electrical conditions. A simple resistive circuit is

considered.

The current flowing in the external circuit is given by

dD2
i(t) = A d(2-36)

The voltage, across a resistor R, in the external circuit is

17
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V(t) - -5 - f E dX (2-37*)

For a rotated-cut crystal, we have

Di' - P +  El (2-38)

We can eliminate E; between equations (2-37) and (2-38) and write a

. differential equation for D2 (t). We consider the specific situation of

a rotated Y-cut LiNbO3 crystal and use the permittivity tensor from

equation (2-13). Combining equations (2-37) and (2-38), the voltage in

the external circuit is

V' D2 2 23 3E d
- f dX' (2-39)

2 0 22

Because of equation (2-12), D2 is only a function of time. The
4. tangential component of the E field is continuous through the thickness

of the disk. As before, we assume the permittivity to be unchanged by

the small strain. Hence,

a (D' E p3 lt'
AP 2  - 2 22 + 1 f P dX. (2-40)

_C 2 22 0

P 2 in the disk depends on all three strain components (E , E , and E;)

as indicated in equation (2-23).

The general solution of the coupled problem is obtained by solving

equations (2-28) through (2-30), (2-32), and (2-40) simultaneously.

Lawrence and Davidson 1 5 presented a numerical method for solving the

coupled problem for the simpler uniaxial strain loading. This solution

will be useful as a guide in developing the solution for the more

* complex situation considered here.

The form of this equation is identical to . (3.2) in the paper by

Chen et al. in the limit of small stiains. A similar equation was
derived 20 years ago by Jones et al.

18

%, .1 ' . .
~W ~ .U d M h~A.l %* 1.% %



In the short-circuit approximation (R v 0), we obtain the results

derived in the last subsection.

D= +L r"P d' ', (2-41)
11 ~0  2~X+' E

Although this expression is the same as that derived for the elastic-

dielectric medium in the uncoupled approximation, the similarity is

somewhat misleading because the values of the D field at any instant

determine the mechanical variables through equation (2-32). Hence, the

electrical and mechanical variables need to be calculated simultaneous-

ly. Figure 4 in Reference 15 shows clearly the effect of electro-

mechanical coupling on the current output from a Z-cut LiNbO3 gage. The

electrical field variations can produce stresses in regions where the

mechanical wave has not reached. To include electromechanical coupling

in the analysis of wave propagation (presented in Appendix B) in

rotated-cut crystals Is a time-consuming but straightforward procedure.

However, before such a task is attempted, the importance of the two-

dimensional electrical field effects indicated at the end of the last

subsection needs to be determined.

The electromechanical coupling effects can be neglected in two

situations: in the analysis of the initial current jump as discussed by

Graham 6and in the open-circuit mode where no current is allowed to flow

in the external circuit. This latter situation arises in the field

usage of piezoelectric gages. In the open-circuit mode, i - 0 in

equaion(2-6). Hene, 2 is independent of time. Thus, the

mechanical variables can be calculated in the usual manner by using C

as the elastic moduli. For the open-circuit case, the mechanical

boundary conditions and their effects on the electrical fields may be

important.

*Because of zero conductivity, D2 Is independent of X2
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2.4 IMPLICATIONS FOR EXPERIMENTS

It is desirable to find a gage whose output can be modeled using

the idealized elastic dielectric analysis presented In Section 2.2.

Such a gage would have to meet the following three requirements: (1)

its electrical polarization must be due solely to the shear stress of

interest (no cross-axis shear effect), (2) this polarization must be

one-dimensional and along the gage thickness direction, and (3) the gage
thickness direction must be a specific direction.

As Indicated in our previous study, 2none of the principal cuts in

a-quartz or LiNbO3 satisfy all of these requirements. Even when

rotated-cuts are used *only the 1630 Y-cut LiNbO3 crystal approaches the

desired requirements. As indicated earlier, the optimal orientation

depends strongly on the values of the piezoelectric constants ejij.
Also, for the gage to be useful the crystal orientation has to be

matched accurately to its optimal value. Practical usage always

involves some error or variation. Hence, laboratory experiments are

p.' required to assess the gage response, to verify the theoretically

predicted behavior, and to determine the tolerance limits for the gage

response. Because the output of the rotated-cut crystals is not easily

analyzed, the experiments are designed using the Idealized analysis.

Subsequently, the gage output is carefully analyzed to assess the
deviation from the idealized behavior.

Although the current or short-circuit mode Is more complex, it is

ideally suited for laboratory calibration studies. The initial jump can

be analyzed without the complexity of electromechanical coupling. The

results can then be used in developing a gage package for field applica-

tions.

Our feasibility study indicated that the specific direction closest

to the 163* Y-cut orientation was the 165.50 Y-cut orientation. 2  The

* ~The accepted nomenclature for piezoelectric crystals is presented in
Reference 3.
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closeness of these two orientations suggested that they both should be

examined in the laboratory experiments. The one-dimensional compression

and shear experiments we performed on gages with these orientations are

described in the next section. These experiments allowed us to quanti-

tatively measure the shear-to-compression sensitivity ratio (1630 Y-cut

orientation), check the piezoelectric constants by performing experiments

along a specific direction (165.5* Y-cut orientation), and determine the

effect of small deviations from a specific direction. In addition,

detailed analysis of the gage response can be used to ascertain the need

*to model the more complex phenomena indicated in this section.

I'
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V SECTION 3

EXPERIMENTAL METHOD AND RESULTS

3.1 EXPERIMENTAL DESIGN AND METHOD

All the LiNbO3 gages used in our work were fabricated by Specialty

Engineering Associates according to our specification. The LiNbO 3

crystals were cut to the desired orientation to within ± 0.*. The

gages were parallel to within ± 2.5 pim and were planar to within

± 1 11M. These values are typical of piezoelectric gages used in shock

wave experiments. The wraparound (or shorted gage) configuration2 was

used in all the experiments described here. A few experiments were

performed with the shunted-gage configuration, but it was difficult to

maintain a ground connection with the gage front surface. Because the
23shunted gage configuration is a superior configuration, the

possibility of using shunted gages in future experiments should be

examined.

Guard rings, nominally 0.08 mm wide, were cut on the back side, and

a 50-9 resistor was connected across the inner electrode and the ground

(or outer) electrode. The gages were enclosed in an aluminum housing

with epoxy potting at the rear of the gage. The nominal values for gage

diameter, gage thickness, and the inner electrode diameter were 26 Mm,

5 mum, and 8 mmn, respectively. The exact values for the different gages

along with the experiment number are presented in Table I. Some of the

columns in Table I are explained in the following paragraphs.

J... The work described in this section was performed in collaboration

with W. J. Murri.
tThe supplier indicated that the orientations were good to within
± .2*. We now believe that future work will require that the

orientations be known with better accuracy.

22

% %



-~~~~~~~~~~~~~~~ ------ 0w----- gn-D., 1- ar, - na'an-Urw-rrr

01 ;j ii F, 1I 11 11 10 W%

41140 -
- - -

0 c4 c01t4 .t -4 .4 .4 -

410T 1

I CL

0o 0- w' 0'U l
1-0 ~ ~ ~ ~ l 10 en % ~ ~ -- - 4

01 '

41l

c c o 0c 6 0 41

CD 
0.1

-'Aa N. 0-. 0%'-0 '001-tU~0 0 Cc'8 ~ ~ 0 % 00
.- 00 -0 00 00 0 00 = Q

1~ 0 000 0 00 0 0

0 6m V1 .

-04

410.

20 *CD C0

1.002 '0% ~ ' 0 ~ 0% Q

~41.0
3o -'0.4 41 1.0

230

41 q1 x



The back surface gage configuration shown in Figure 2 was used in

all the experiments. A flyer plate inclined at an angle of 900 - 6 t

the direction of projectile motion impacts a parallel specimen plate

backed by the LiNbO 3 gage. To distinguish from the laboratory

coordinate system (X i-system), we define a Xi-system with the X2-axis
'i.' 1 'I'4 parallel to the gage thickness direction, and the X1-axis coincident

with the X 1-axis.

For a general impact (9 * 0'), two waves are propagated into the

flyer plate and the sample plate: a compressive wave and a shear

wave. The compressive wave, which travels at a faster velocity through

the sample plate, impacts the specimen-gage interface, producing a

transmitted wave in the LiNbO3 and a reflected wave in the sample
3*

plate. The slower traveling shear wave in the sample plate interacts

with the reflected compressive wave before arriving at the specimen-gage

interface.

The use of a back surface gage for determining gage calibrations is

not an optimal arrangement because of the need for an accurate knowledge

of the shear response of the specimen, the wave interactions in the

specimen, and the shear strength of the specimen-gage interface. The

advantage of using the specimen (or buffer) plate is that it provides a

temporal separation between the compression and the shear wave. This

separation permits an evaluation of the gage response to each wave and

is useful in modeling the response of a rotated-cut crystal. If the

intent is to measure the piezoelectric constants, then compression-only

(9 - QO) experiments with no buffer plates, such as those performed by

Graham, 6are desirable. In our experiments, the flyer and specimen

plates were made of PMMA (Rohm and Haas Type II UVA Plexiglass). This

material has been studied both under compression2  and shear loading.2

The specimen plate thickness was typically 1 mm.

V *In the present case, we assume linearity and ignore this interaction.
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For experiments where a shear wave was introduced in the sample

plate (0 * 00), the direction of the shear motion was always along the

X3-axis. The two coordinate systems shown in Figure 2 are related to

the crystal orientation in the following manner. The rotated Y-cut

crystals involve rotations about the crystallographic X-axis. We denote

a new set of axes relative to the disk of the cut crystal by X', Y' and

Z'. The Y'-axis is normal to the crystal disk, and is related to the

crystallographic Y-axis by a rotation of 1630 or 165.5 ° about the

crystallographic X-axis. As a result the XV-axis coincides with the

crystallographic X-axis, with the Z'-axis normal to it in the plane of

the disk. The supplier had marked both the X'- and Z'-axes on the sides

of the crystals. As indicated earlier, the optimal gage is one that

produces an electrical output only when sheared along the Z'-direction.

In Table 1, Z' = 0* means that the Z'-axis marked on the gage

housing was oriented along the X3-axis; Z' = 900 indicates that it was

aligned with the XI- and Xl-axes. The purpose of the Z' = q0° alignment

in combined compression and shear experiments was to check the cross-

axis shear effects. For this alignment, the X'- (or X-) axis is along

the X3 -axis, which is the direction of shear. A signal for this

alignment would imply a cross-axis shear effect. Most of our

experiments were compression-only (9 = C°) experiments. Aligning the

Z'-axis along either the X3 - or Xl-axis, was advantageous because it

permitted us to evaluate the effect of impact tilt, as discussed later.

The impact experiments were performed using the SRI gas-gun

facility for studying large-amplitude one-dimensional compression and

shear wave propagation in solids.26  Details of the gun barrel, target

holder, and related instrumentation for measuring particle velocities,

projectile velocities, and impact misalignment are presented in

Reference 26.

The target assembly for the impact experiments was constructed by

bonding the LiNbO3 gage to a PTMMA specimen plate that was typically 5 mm

thick. Fpon 815 epoxy resin and hardner were used for bonding, and the

epoxy layer was made very thin (less than 1-2 4m). The PMMA specimen-

26

* . - .. . -. - ...



gage assembly was potted in aluminum target ring as shown in Figure 3.

The front face of the target assembly was machined and ground to Pchieve

a I mm thickness for the PMMA plate. The completed projectile and

target assembly shown in Figure 3 are for a single-gage, compression-

only experiment.

The U-shaped vapor-deposited gage on the PMMA surface is used to

measure the particle velocity at the impact surface. For compression-

only experiments, this measurement is not necessary because the particle

velocity is one-half the projectile velocity. However, in combined

compression and shear experiments, this measurement is essential for

determining the shear particle velocity at the impact face. The three

sets of vapor-deposited tilt pins, at 1200 intervals, are used to

measure the impact misalignment. The fourth set of metallic leads are

0.001-inch-thick copper foils used to trigger the electronics. The long

outrigger on the projectile is necessary for the particle velocity

measurements, as indicated in Reference 26. The target assembly for the

combined compression and shear experiments reported here is identical to

that for the compression-only experiments. The projectile assembly is

also similar except that the flyer plate is mounted by cutting the

outrigger at an angle. All components are precisely aligned using the

three holes in the target ring, shown in Figure 3.

When we first began these experiments, we measured the tilt only to

ensure that the impact misalignment was small. However, we later found

that the tilt measurements were of particular importance because an

accurate quantitative analysis of the data needs to incorporate the

effects of tilt, as described in Section 4.3. We recommend that in

future experiments the impact misalignment be measured with an even

higher degree of accuracy.
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4-

400

I.i
Figure 3. The projectile and target assembly used in the impact experiments.

(The vapor-deposited metallic coating on the projectile shorts the
vapor-deposited tilt pins on the target to provide a measurement
of the impact alignment.)
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3.2 EXPERIMENTAL RESULTS

Table 2 summarizes the eight experiments performed, which involved

14 gages. *Of these experiments, only Experiment 1 is taken from our

feasibility study reported earlier. 2  The voltage-time profiles from all

eight experiments are shown in Figures 4 and 5 and are discussed

individually in this subsection. Appendix F shows more detailed

current- or voltage-time plots prepared after digitizing the data.

In Table 2 the impact angle refers to the value of e as defined in
Figure 2(a). Impact tilt is based on the closure time across the three

sets of pins shown in Figure 3. Although the absolute values of the

tilt measurements are probably accurate to within only 10 to 15 percent,

the values cited in Table 2 are good representations of the relative

differences between the shots. The fifth column of Table 2 lists the

orientation of the normal to the line of contact during closure relative

Sto the X-_axis as defined in Figure 6. For example, a nonzero value of

the tilt in Experiment 3 implies that the impact was not simultaneous

over the entire face of the specimen plate; the 90* value in the fifth

column indicates that the closure between the flyer and sample plate

proceeded along the X3ai.Effectively, this results in a shear

defrmaio alngthe X'-direction evnfor a compression-only (9- *

experiment. As discussed later, this effect is significant and needs to

be accounted for in the data analysis.

The next three columns of Table 2 are defined as in Table 1. The

measured current, in column nine, is calculated using the voltage value

at the first jump and the effective resistance values cited in Table 1.

In using piezoelectric gages, it is generally preferable to use current

calibration steps rather than voltage calibration steps; this procedure

Several other experiments were performed, but they did not yield
meaningful data, and the results are not listed here. In these
experiments either the gage broke or foam impactors were used. The

intent of using the foam imspactor was to obtain low stresses without

lowering the impact velocity.
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avoids measuring the effective resistance separately. We believe our

calibration procedure is reasonable (within 1-2 percent) because the

effective resistance was carefully measured. In fact, the largest error

occurs in reading the voltage jump. Because of the significant current

"- ramping following the initial jump and because of the rounding, seen in

most of the records, it is difficult to identify the first jump. This

error is significant for Experiment 6 as seen in Figure 5(f). The three

current values shown in parenthesis in the current column correspond to

the jump following the shear signal and include the contributions from

both the compression and shear waves.

The duration of the signal, shown in Figures 4 and 5, permits a

measurement of the quasi-longitudinal wave (shock) velocity in the

LiNbO 3 crystals, which is indicated in the second-to-last column.

Averaging the five 1630 Y-cut values and the three 165.50 Y-cut values,

we obtain the following wave velocities:

1638 Y-cut: 6.73 mm/.s

165.50 Y-cut: 6.72 ,"/Ls

D 5Using the C values derived from Smith and Welsh's paper, we

calculated the quasi-longitudinal wave velocity, as outlined in Appendix

B. The calculated wave velocities for these two orientations are within

, 0.1 percent of each other, and we cite an average calculated value of

6.743 nm/4s for both orientations. Given an experimental scatter of ± I

percent in the data, the measured wave velocities agree with the
calculated wave velocities. To be consistent with our numerical

calculations, we used the 6.743 mm/us value in analyzing the current

_.5 data.

In Section 2.1, the current output for the idealized situation was

derived as

- A[P U + P U ] (2-8)
9 c ss
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Figure 4. Voltage-time profiles from experiment 1 (78-2-46)
with 1630 Y-cut (Z' = 0° ) LiNbO3 gage. [The top
trace represents output from the LiNbO3 gage (1 V/div).

.4. The bottom trace represents transverse particle velocity
imparted to the PMMA (0.05 V/div). Time scale is
common to both traces (0.2 1is/div)].
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(a) 2 (81-2-15) (b) 3 (81-2-22)
Upper Trace: 1630 (Z' = 900) Upper Trace: 165.50 (Z' = 00)
Lower Trace: 1630 (Z' = 00) Lower Trace: 1630 (Z' = 00)

(c) 4 (81-2-23) (d) 4 (81-2-23)

1630 (Z' = 00) 165.50 (Z' = 00)

Figure 5. Voltage-time profiles from experiments 2 through 8
with rotated Y-cut LiNbO gages. [The voltage and
time scale per division are sh own in the photographs.
The voltage scale in (a) was 3 V/div.]
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(e) 5 (81-2-24)

1630 (Z' = 00)

() 6 (81-2-43) (g) 6 (81-2-43)

165.50 (Z' = 00) 165.5' (Z' = 900)

Figure 5. Voltage-time profiles from experiments 2 through 8
with rotated Y-cut LiNbO 3 gages. [The voltage and
time scale per division are shown in the photographs.
The voltage scale in (e) was 3 V/div. The voltage and
time setting in (f) and (g) are alike.] (Continued).
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(h 7 (84-542)

165.50 (Z' = 900)

M' 8 (84-543)

Upper Trace: 1630 (Z' = 00)
Lower Trace: 1630 (Z' = 900)

Figure 5. Voltage-time profiles from experiments 2 through 8
with rotated Y-cut LiNbO3 gages. (The voltage and
time scale per division are shown (n the photographs.)
(Concluded).
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+"

Normal to Line 1

+..

Z' =900 Z' =0°

33

--X

Figure 6. Impact closure as seen from the projectile side.
[The X' axes are the same as shown in Figure 2(b).
The points 1, 2, and 3 refer to the tilt pins. The
two axes labeled Z' represent the orientations of
the projection of the Z'-axis onto the plane of the
crystal disk in the two gage orientations typically
used in our experiments. For a nonsimultaneous
closure, the line of contact is defined by the angle 0.]
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where I is the gage thickness, A is the ettective electrode area, U c is

the longitudinal wave velocity, and Us is the shear wave velocity.

* Using the data given in Table I and the value of Uc cited above, we

calculated the compressive polarization (Pc) , listed in the last column

of Table 2. The polarization due to shear (Ps) is shown in parenthesis

for the three compression-and-shear experiments along the 163 ° Y-cut

orientation. A calculated Us value of 4.58 mm/4s was used in

determining the Ps value. Note that, unlike the current values in

parenthesis, the shear polarization values are due only to the shear

deformation t That is, the shear polarization values were calculated

from the difference in the current values.

The method used to analyze the current data at the initial jump in

our experiments is similar to that used by Graham for his LiNbO 3

data. 6 The one minor difference is that Graham incorporates finite

strain correction in his results. In our experiments, the strain values

are less than 0.2 percent, and this correction is ignored in calculating

the polarization.

As mentioned earlier, the effect of tilt is an important factor.

As shown in Figure 6, not only is the tilt angle (column 4 in Table 2)

important, but the orientation of the line of closure with respect to

the XI-axis (column 5 in Table 2) also influences the result in two

ways. First, the angle s determines the relative magnitude of the shear

strains E23 ( - 6;2 ) and 6;1 (= Ei3); second, for two-gage experiments,

the time correlation between the two sets of signals depends on the

angle $. A general theoretical analysis for quantitatively

incorporating the effects of impact tilt by assuming the LiNbO 3 as an

isotropic, elastic plate is presented in Appendix E. Further discussion

of tilt effects using this analysis is presented in Section 4.

A is computed using a diameter that extends to the center of the
insulating gap in conformity with Graham's method.6

tThis is only approximately true because we have not subtracted the
II small ramping contribution of the compression wave.
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Results from the individual experiments (Figures 4 and 5) are

discussed qualitatively below. These data are analyzed and the

piezoelectric constants are calculated in Section 4.

Experiment 1 (78-2-46): Figure 4, taken from our earlier work, 2

shows the shear particle velocity at the Impact surface along with the

LiNbO3 output on a common time scale. The measured shear particle

velocity was approximately 90 percent of the value expected from the "no

slip" condition. The LiNbO3 signal shows a small signal from the

compression wave and a larger signal for the shear wave. We did not

have the precise resistance values and hence the current values cited in

Table 2 are good to only 4 or 5 percent. However, the ratio of the

compression signal to shear signal does not depend on the resistance and

should be fairly accurate. On the basis of the tilt angle and

% the $ value in Table 2, we expect some shear contribution even for the

compression wave.

Experiment 2 (81-2-15): This experiment was designed to address an

important objective of this study: the effect of cross-axis shear. The

two gages were oriented with their V-axis parallel (Z' - 0') and per-

pendicular (Z' -900) to the X3-axis. In Figure 5(a), a clear two-step

signal, similar to that in Figure 4, is seen for the Z' -0* gage; the

Z= 90 gage does n--' show a two-step signal. This result confirms the

' theoretical predictions that the shear gage should display no cross-axis

effect. Because of the direction of the impact closure line ((b - 1400),

the V' 00 gage signal began earlier, as expected. There are two

features of this experiment that we believe are caused by the impact

tilt: the difference in the compression signal between the ZV = 900 and

the Z' - 0 gage (see Table 2), and the small decrease in the Z'- 0

signal at the time of the shear wave arrival at the specimen-gage inter-

face. We address these issues In the next section.

Experiment 3 (81-2-22): This experiment was designed to compare
the output of 1630 and 165.50 Y-cut crystals in a compression-only

K. experiment. Such an experiment Is also useful In checking the piezo-

electric constants because the 165.50 Y-cut Is a specific direction

38



on the basis of the literature CDj values. Fortunately, this experiment

also had the lowest tilt arid was 900. Thus, the gages were subjected

to identical loading. In Figure 5(b), the initial current output of the

165.50 Y-cut gage is higher than that of the 1630 Y-cut gage (also see

Figure F.3). As expected for $ - 90, both gage signals begin at nearly

the same time. The 165.50 Y-cut gage signal actually begins earlier

even though it had a thicker specimen plate. This suggests that the

correlation with our tilt measurements is reasonably good but not

exact. For an exact correlation, the centers of the two gages should be

emplaced com! tely symmetric to the tilt pins.

The signals drop at a time that corresponds to the arrival of a

shear wave at the specimen-gage interface. Because of the higher

voltage sensitivity for the 1630 Y-cut gage, this drop is more

discernible in the record. Because no shear deformation was introduced

into the specimen, the small shear wave generated due to tilt (see

Appendix E) may be the cause of this drop in the signal. An estimate of

this drop is made in the next section. (This is the same as the tilt

correction).

Experiment 4 (81-2-23): This experiment was performed to confirm

the findings of Experiment 3 and provide data at a different compressive

level for calculating the piezoelectric constants. Unfortunately, the

impact tilt was nearly 2.5 times the tilt in Experiment 3 although 6 was

900. Because b was 90 , we expected the two gage signals to begin

simultaneously. The signal of the 1630 Y-cut gage is observed to start

slightly early, confirming our remarks earlier concerning the limited

accuracy of our tilt measurements. The overall features of the gage

records are similar to those shown in Figure 5(b) for Experiment 3. The

drop in the signal, discussed above, occurs in both gage records.

Linearly scaling the results of Experiment 3, we expected a current jump

of 82 mA for the 165.50 Y-cut gage. Instead, the observed jump was 85

,e mA. The current jump for the 1630 Y-cut gage was 5 to 7 percent higher

than the jump in Experiment 3 although linear scaling suggests a

decrease of 30 percent. Again, the influence of tilt is at least a
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qualitative explanation for this because it would have a larger relative

effect for the 1630 Y-cut orientation. However, without a quantative

analysis this is oniy conjecture.

Experiment 5 (81-2-24): This experiment was designed to provide

-data similar to that from Experiment 2 but at a higher stress.

Unfortunately, the tilt was 40% higher than in Experiment 2, and the ZV

= 900 gage did not produce any meaningful data. The-Z' = 00 gage again

shows the characteristic two-step signal expected for combined

compression and shear loading. The shear polarization value, P.9 scales

very well between this experiment and Experiment 2. This value,

measured as the difference between the two current steps, is largely

unaffected by tilt. The current jump due to compression for this

experiment is larger than expected from linear scaling with Experiment

2. However, the tilt value in Experiment 5 was higher than that in

Experiment 2 (the $ value was comparable) and this can influence the

results.

" Experiment 6 (81-2-43): This experiment was designed to examine

the differences in the effect of tilt, if any, in a compression-only

experiment. Both gages had the 165.50 Y-cut orientation. One was

* -~ aligned with Z' - 00 and the other with Z' = 9f0*. As seen in Figures

5(f) and 5(g), the two voltage-time profiles are quite different. we

have spent considerable time in trying to understand this result but

P.*** ~have had little success. The marked roundedness of the initial jump in

both records adds uncertainty to a comparison of their magnitudes, andii the profiles beyond the first jump are markedly different. One is

forced to conclude that tilt and variations in gages must be the cause

~VV because there is no other way to distinguish between these gages in a

V',.'compression-only experiment. The impact tilt and the $ value in Table 2

suggest that the shear generated by the tilt will increase the

polarization for the Z' - 00 gage. The Z' -00 gage profile from this

experiment is comparable to the 165.50 Y-cut (Z' -00) gage profile from

Experiment 3, shown in Figure 5(b). The higher initial jump in

Experiment 6 compared with the initial jump in Experiment 3 also
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suggests tilt effects. It is the Z'= 900 gage profile in this experi-

ment that remains a mystery.

Experiment 7 (84-542) This experiment was performed to reproduce and,

we hoped, provide understanding of the response observed for the 165.50

(Z' = 900) gage in Experiment 6. The measured voltage-profile shown in

Figure 5(h) is considerably different from the profile in Figure 5(g).

Because the tilt for this experiment was small, the rise time in Figure

5(h) is smaller than Experiment 6. The tilt result from this experiment

is comparable to Experiment 3 and the overall profiles in Figure 5(d)

and Figure 5(g) are similar. The measured current jump of 92.5 mA is

markedly different from the values in Experiment 6 but is closer to the

current values in Experiments 3 and 4. Before drawing any final conclu-

sions, the tilt analysis needs-to be incorporated. On the basis of this

experiment, and the similarity with Experiments 3 and 4, we conclude

that the results from the 165.50 (V' = 9Q0) gage in Experiment 6 are

anomalous. The cause of the anomoly is presently unknown.

Experiment 8 (84-543) *:Because the results from Experiment 6 were not

useful, we performed a compression-only experiment with Z' = 00 and

Z' = 900 gages to examine the effects of tilt. In the absence of tilt

these gages should provide identical response. The only gages that were

available to us from the original batch were 1630 Y-cut crystals. The

measured voltage profiles are shown in Figure 5(i). As indicated in

Table 2, the current and polarization at the first jump are 50 percent

different. This difference can be due to two factors: tilt effects or

variations in gage orientations. These dati are analyzed in the next

section and compared with theoretical predictions incorporating tilt

effects to determine the cause of the observed difference.

Experiments 7 and 8 were performed at the Shock Dynamics Laboratory
of Washington State University. The assistance of Pete Majewski and
Martin Williams is gratefully acknowledged.
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The experimental results from all the experiments are summarized as

follows:

(I) The 1630 Y-cut LiNbO3 crystals show considerably larger
4*- sensitivity to shear loading than to compressive loading.

(2) The 1630 Y-cut LiNbO3 does not appear to be sensitive to

cross-axis shear.

(3) There is considerable experimental evidence to suggest that,
because of the large shear sensitivity of these gages, we need

to account for tilt effects in data analysis. Not only is the
magnitude of the tilt angle important, but the relative
orientation of the impact closure line can also make a
difference.

(4) The response of the crystal in the Y-cut 165.50 orientation to
compression loading is considerably higher than the response
of the crystal in the 1630 Y-cut orientation.

(5) The results of Experiment 6, in which two 165.50 Y-cut gages
(Z' = 00 and Z' - 90*) were subjected to compression-only
loading, are not currently understood. Based on the results

of Experiment 7, the Z' = 900 result in Experiment 6 is
believed to be anomalous.

(6) The large current rise beyond the initial jumpsuggests the
importance of modeling electromechanical coupling at late
times.

(7) Some of the experimental results do not scale with projectile
velocity, suggesting effects of tilt or variability of the
orientation of the crystals. The latter effect would be

particularly important for the 1630 orientation.

(8) The wave velocity measurements, inferred from the duration of

the signal, show a ± I percent scatter. Within this scatter,
these values match the calculations.
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SECTION 4

aaANALYSIS AND DISCUSSION

This section compares the experimental results with the theoretical

predictions using the uncoupled elastic-dielectric model outlined in

Sections 2.1 and 2.2. We believe that the uncoupled approximation is

appropriate f or analyzing the initial jump in our experiments.

Potential causes for discrepancy between the theory and experiment are

examined. Tilt effects, using the theoretical developments presented in

Appendix E, are estimated. The overall findings are discussed at the

end of the section.

'-. 4.1 NUMERICAL SIMULATION OF THE EXPERIMENTS (MECHANICAL VARIABLES)

One-dimensional wave propagation code calculations were performed

using the subroutine ANELAS described in Appendix B for computing the

stress in anisotropic LiNbO3 crystals. The pertinent mechanical

variables in the LiNbO3 for each of our experiments are listed in Table

3. The LiNbO 3 elastic constants, CDj, used in these calculations are

from the work of Smith and Welsh. 5 . The PMMA was modeled as a nonlinear

elastic material using the following material properties:

33Initial density: pm 1.185 glcm3

Pressure-volume relation: P (kbar) - 62 i + 295 2 + 134
(4-1)

A where jLi =2 -  - i
4.'. 

00
Shear modulus: G (kbar) = 22.5 + P

These authors report only constants in their paper. These con-
stants were converted to Cjj using the procedure indicated in
Appendix B.
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For compressive stresses below 7.6 kbar, the results of this model are

in good agreement with the PMMA data of Barker and Hollenbach,24 and

Gupta.2 5  In all the numerical simulations the PMMA buffer plate was

modeled as I mm thick, which is slightly different from the actual

thicknesses listed in Table 2. Because of the elastic nature of the

calculation, this difference does not affect the wave amplitudes.

Comparison with arrival times will require appropriate scaling. The

results shown in Table 3 are based on zero tilt, that is, perfect

alignment at impact. Hence tilt effects need to be separately accounted

for.

For compression-only experiments in Table 3 there is only a single

wave in the PMMA buffer plate. The stresses and strains are listed in

the matrix notation. The results scale approximately with the

projectile velocity; the scaling is not exact because of the nonlinear

response of the PMMA. For the 165.50 Y-cut orientation, the LiNbO3

strain response is nearly uniaxial. For the 1630 Y-cut orientation, the

shear strain, although small, can have significant contributions to the

polarization, as discussed later. Because of the closeness of impact

velocities, the results for Experiments 6 through 8 can be scaled from

the results for Experiment 3.

The calculated results for the combined compression and shear

experiments in Table 3 were results using a no-slip condition at both

the impact and the PMMA/LiNbO3 interface. The two sets of values for

meach experiment result from the two waves generated in the PMA buffer

C plate. The first entry for each experiment represents the LiNbO 3 state

after the compression wave arrival at the PMMA/LiNbO3 interface; the

second entry represents the final state after the arrival of the shear

wave at the gage interface.

The shear strain E' and the corresponding stress and particle

velocity are zero in Table 3. This result differs slightly from the

numerical results presented in Table C-2 of Appendix C for Y-cut and

%" 36*-rotated Y-cut crystals. The cause for this slight difference is the

use of an X-cut quartz crystal as impactor in contrast to the use of

PMMA as an impactor.
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In Appendix B, we present the CD values from the work of Smith and
Welsh 5 and Warner et al.4  Except for the value of C2 the values for

the other constants are quite close. To determine the effects of

scatter in the C j values on our results, we performed a series of

calculations for compression-only experiments using the CDi values of

Warner et al. 4  The results are presented in Table 4. Comparing Tables

3 and 4 shows that the values of the compressive variables are almost

identical. However, the values of the shear variables are different,

and the larger relative differences observed for the 165.50 Y-cut

orientation indicate that the two sets of constants give rise to some-

what different specific directions. However, both sets of constants

show that the strain response along the 165.50 Y-cut is very nearly

uniaxial. The E' differences for 1630 Y-cut orientation are not
4

negligible and provide a measure of one source of scatter in comparing

-. polarization values between theory and experiment. This is discussed in

subsection 4.3.

4.2 ANALYSIS OF THE POLARIZATION MEASUREMENTS

The polarization along the gage thickness for a rotated Y-cut

crystal can be written in the matrix notation as

P= e2 2 E;2 + e2 4 E4  (2-23)

*,,*" .1 I I

There is no contribution from the e26 E term even when E is nonzero

because for a Y-cut or a rotated Y-cut LiNbO 3 crystal e26 is zero.

Expressions for e2 2 and e2 4 are presented in Appendix D; the general
I

S. expression for P2 in terms of eij is shown in equation (C.1).

Using the strain values cited in Table 3, the piezoelectric

constants eij, and equation (2-23), we can compare the calculated and

measured polarization values, as shown in Table 5. In comparing these

values, the following stipulations are important:

(1) The measured current was converted to polarization using the
uncoupled elastic-dielectric analysis of Section 2.2 because
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ignoring the electromechanical coupling is reasonable for the
initial jump. However, we have had to also ignore the
contribution of the current iE in equation (2-24) because we
have no way of assessing it. This simplification of the

analysis of Section 2.2 is equivalent to neglecting the off-
diaganol elements of the permittivity tensor, or the E field
components normal to the gage thickness direction (see
equation 2-22). Without a means of estimating iEs it is
difficult to assign error bars on the measured polarization
value.

(2) The polarization values listed in parenthesis in Table 5 are
the shear contributions. In calculating these values, we
assumed that the impact surface and the PMMA/LiNbO3 interface
bond can transmit the shear stresses.

(3) The two sets of calculations reflect the two sets of eij
values inferred from the literature. The main discrepancy is
in the e2 2 constant, as discussqd in Appendix C. The two set
of values used in calculating P2 from equation (2-23) are as
follows:

Orientation e22 (C/m2) e24 (C/m2 )

1630 Y-cut -8 x 10- 3 (Old) -3.76 (Old)

-3.49 x 10- 1 (New) -3.86 (New)

165.50 Y-cut -3.58 x 10- 1 (Old) -3.85 (Old)

-7.12 x 10- 1 (New) -3.94 (New)

These values are discussed in greater detail in Appendix D.

Comparison of the calculations with the experimental measurements
leads to the following conclusions:

(1) The obsirved shear contributions to polarization in Experiments
2 and 5 closely match the theoretical values.

(2) The results of Experiment 2 suggest that there is no cross-axis
sensitivity.

(3) The agreement between the theory and experiment is not good for
compression loading. Most of the compression loading data
agree better with the old set of constants. However, some

*Experiment I is less reliable, as indicated in Section 3.
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agree with the new set of constants; no systematic trends are
obvious. The calculated compression resBonse for 163 ° Y-cut

crystals also depends markedly on the C value chosen. For
example, using the values in Table 4, t e calculated
polarization for Experiment 3 in Table 5 is 0.36 and not 0.44.

(4) These inconsistencies and the inconsistencies among the data

themselves (dicussed in Section 3) suggest that contributions

from the following sources of errors may be important: (a)
finite tilt values, (b) deviations from the desired crystal
orientation, (c) uncertainties in the knowledge of the piezo-

electric constants and C1  , (d) the extra current term in
the rotated-cut derivation discussed in Section 2.2, and (e)

the contribution from electromechanical coupling due to tilt,
which can introduce an error in the measured current jump e.g.
Experiment 6. An estimate of the contributions from the first

1two sources is presented in the remainder of this section. The
contribution from the last two sources can only be assessed

• 4 after further theoretical work.

4.3 ASSESSMENT OF TILT EFFECTS

[. *J We were unable to develop a simple method to estimate tilt

* effects. Therefore, the analysis described in Appendix E was developed.

However, this analysis is not exact because it treates the LiNbO 3 as an

isotropic solid. Despite this limitation, we believe that the results

of our tilt analysis provide a quantitative assessment. By using the

compression and shear wave velocities that are pertinent to our crystal

orientations, we can obtain reasonable values of E' and E4 in the LiNbO3

for use in equation (2-23). Also, the crystal orientations are fairly

close to the specific direction.

As indicated in Appendix E, a finite tilt results in a compression

and a shear wave inclined at an angle to the impact surface. The faster

travelling compression wave reaches the PMMA/LiNbO3 interface and

produces a compressive stress (a) and a shear stress (ak). We

$ calculated the contribution to polarization from the shear stress

(actually, shear strain). To convert the stresses into strains, we used

the following moduli for LiNbO3 : Longitudinal modulus = 2114 kbar and

Shear modulus - 986 kbar. These values are equivalent to a longitudinal

wave velocity of 6.75 mm/s and a shear wave velocity of 4.61 mm/4s.
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Both values are very close to the wave velocities calculated by using

the Cj values and equation (B.6).

Because we are approximating the LINbO3 as an isotropic crystal,

the other stresses will not be matched correctly. In the present

analysis this is not important because the polarization contribution due

to tilt arises from the E4 strain caused by the finite tilt. For both

orientations (163" and 165.5" Y-cut), E4 has the same value for a

particular impact experiment. To calculate the polarization, PTO we

2used a e2 4 value of -3.85 C/m . This value is reasonable because the

e;4 value for the two orientations using either set of constants ranges

from -3.76 to -3.94 C/m2 .

In the analysis presented in Appendix E, we also calculated the

effect of the slower travelling shear wave, generated at the impact

surface, after it reaches the PMMA/LiNbO 3 interface. The effect of this

shear wave is not included in this analysis of tilt effects because we

A'. are interested only in calculating the polarization at the first jump.

The results incorporating the effects of tilt are summarized in

Table 6. The compressive strains, e 2, were derived from the oblique

plate analysis described in Appendix E, using the longitudinal modulus

value cited earlier. Although these values are not used for

polarization calculations, they can be compared with the E 2 values cited

in Table 3. The shear strains C4 were calculated from the shear stress

due to finite tilt. The tilt contributions to the polarization, PTO

were calculated from

T - -3.85 C4 C/m  (4-2)

We interpret the tilt contribution as follows: the PT values

represent a contribution to polarization that is present in the

7*

The eigenvalues for the 163* and 165.50 Y-cut orientation are within
0.2 percent of each other, and we use the average calculated values:

6.743 mm/ is (P-wave) and 4.58 mm/ is (S-wave).
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experiments buE not includedai the ter.Hence, th values in

Table 6 should be added to the calculated polarization values shown in

Table 5. We used the polarization values in Table 5 based on the old

ejj constants to add to the PT values. This calculated total is

compared with the experimental measurements in the last two columns of

Table 6. Except for Experiments 1 and 3, the addition of the tilt con-

tribution improves the agreement between theory and experiment. It is

noteworthy that most of the difference in the output of the two gages in

Experiment 8 was due to tilt effects. Without tilt effects, the two

gages (Z' - QO and Z' - 9Q0) would appear identical as expected. This

result underscores the anomalous response of Experiment 6. Although

differences remain between theory and experiment, the results are

encouraging.

In Table 6, we did not calculate the tilt correction for the

contribution of the shear strain to the polarization values shown in

parenthesis in Table 5. First, we wanted to analyze only the initial

jump; subsequent results are strongly influenced by the electromechani-

cal coupling. Second, the S-wave due to finite tilt (not due to the

shear deformation deliberately introduced by making e * 0 in Figure 2)

on arrival at the PMMA/LiNbO3 interface reduces the shear stress (or

strain E4 ) to a small value. This effect is completely masked by the

arrival of the main shear wave. Also, this result suggests that the

tilt error is self-compensating for the shear polarization part. Note

that remarks about tilt corrections at late times cannot be considered

rigorous because of electromechanical coupling effects.

Comparisons of the measured and calculated polarization values

after accounting for tilt effects in an approximate manner are

summarized as follows:

Using the other set would further increase the discrepancy between
theory and experiment.

52

DO02 -e-O



14)1

0C 0 0

V Q1

4u
00 1

0 0 c 00 -- 00 0V000~d

tJ 0

W-~~ C-0 c i

V 
.0

moL 0 o
C6 (u c 0

~~~~~ 000 ~ 0 ~ - N

N~~~~ 0N .

tie w 0 t 00 00 00 0 0000N )

a 4 00

I 00

2 00 C4fi N(

-L co4 00w9 r 0 0
xJ. oe

-
0 J53



S.

(1) The tilt contributions to polarization are significant because
of the large shear sensitivity of the gage.

(2) In six out of eight measurements, the incorporation of tilt
effects reduces the discrepancy between theory and experiment.

(3) The incorporation of tilt effects indicates that the old set
of piezoelectric constants provides a better match to our
data. The old set of constants are presented in Appendix D.

The analysis presented here is not exact. An improved analysis

requires that the anisotropic response of LiNbO3 be accounted for in

calculating tilt effects. We also believe that our tilt measurements

can be improved in future experiments.

4.4 DISCUSSION

The analyses presented in this section have answered some questions

but also raised new ones.

On the positive side, the present work has confirmed the large

sensitivity of the 1630 Y-cut orientation to shear loading relative to

compression loading. The one experiment designed to examine sensitivity

to cross-axis shear suggests that the gage is not sensitive to cross-

axis shear. As predicted, the compression sensitivity of the 165.50

Y-cut orientation is considerably higher than that of the 1630 Y-cut

orientation. A fairly complete theoretical framework has been developed

to quantitatively analyze the gage response to well-defined loading.

Detailed comparisons of theoretical predictions and experimental

measurements have been presented. For shear loading, the theory and

experiment show good agreement (within 3 percent).

* On the negative side, quantitative agreement between theory and

experiment is not good for compression loading (10 to 50 percent). Some

of the inconsistencies among the experimental results have not been

completely resolved. The results from Experiment 6 are believe to be

anomalous (see Figure 5(f) and 5(g) in Section 3). Similarily, the

differences between the first jump for the two gages in Experiment 2

(Table 5) are difficult to understand.
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One is tempted to speculate that neglecting of the current iterm

[see equation (2-24)] in converting the current values to polarization

may be a major source of error. However, this error is probably

systematic because the experimental conditions are fairly similar. The

random tilt variations can only explain part of the discrepancy. Hence,

we are forced to conclude that the variability in the orientations of

~ the crystals may be causing some of the observed inconsistencies. The

supplier assured us that the orientations were within 0.20. Although we

cannot check the gages that have been impacted, the orientations of the

remaining gages from that batch were independently measured. *These

results indicated that the scatter in orientation ranged between 0* and

±1.50. To us this scatter seems high because the suppliert of these

gages had considerable expertise in crystal orientation. Further
S experimental work is needed to unequivocally resolve this issue, as

indicated in Section 5.

There is also the question of the two sets of piezoelectric

constants. The main difference is in the e22 constant. The value cited

in the literature5 (from ultrasonic experiments) is 2.43 C/in2. Our

analysis of Graham's shock wave data, 6described in Appendix C, yields a

value of 2.82 C/m 2. Because the new set of constants (using e22 = 2.82)

are based on impact results, one is tempted to believe these results.

However, our present data are better matched by using the old set of

constants (e22 - 2.43). Clearly, the value of e22, because of its large

influence on the results, has to be established accurately. There are

two deficiencies in the analysis of Graham's data6 . First, the extent

of tilt effects is not known. Second, the conversion of the current

jump to polarization does not account for the two-dimensional effect (iE

We are grateful to Mr. R. A. Graham of Sandia National Laboratories
for these measurements. The standard deviation was estimated to be
±0.5' in these measurements.

t~4ow deceased.
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term) discussed in Section 2.2. When this latter effect is not properly

modeled, the shock response of rotated-cut crystals is suspect. Hence,

we recommend using the old set of constants as defined in Appendix D.

. An added complexity in interpretation arises because the new e22

value of -0.349 C/m2 along the 1630 Y-cut orientation is comparable to

the e22 value based on the old constants but for a crystal misorienta-

tion of * 0.20 (see Appendix D). There is also the question of

difference in the CD2  values reported in References 4 and 5. As

indicated at the end of subsections 4.1 and 4.2, this difference can

markedly influence the compressive contribution to polarization for the

163*-rotated cut crystals. If the E value used in Equation (2.23) is
4

taken from Table 4 instead of Table 3, the P2 value for the compressive

response of the 163*-rotated cut crystals would be decreased by

approximately 15-20 percent.

It is obvious from the above remarks that improved reconciliation

between theoretical predictions and experimental measurementp will
require further experimental and theoretical work, and an improved know-

D
ledge of the piezoelectric constant e2 2 and the elastic constant C12 .

Because of the many potential sources of errors, it is hard to proceed

further without additional information. The need for resolving the

differences between the theoretical measurements and experimental

results for developing a gage package and the specific steps to resolve

these differences are discussed in the next section.
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SECTION 5

CONCLUSIONS AND RECOMMENDATIONS

The objectives of this work, outlined in Section 1.2, have largely

been met. A fairly complete theoretical framework has been developed to

analyze the response of rotated-cut LiNbO 3 gages. The experimental

work, designed to calibrate both the compression and shear response of

the gage, showed the need for a better understanding of several effects

not originally envisioned. Some of the difficulties encountered in

interpreting the results are specific to the shear gage usage, but many

of the difficulties are more fundamental. For example, the disagreement

between the e22 value obtained from the shock work
6 and the ultrasonic

studies5 represents a major uncertainty in defining the optimal shear
Ddirection. Also, the value of C needs to be established accurately.
12

The main findings of the present work are summarized below:

(1) The experimental data on 163°-rotated Y-cut LiNbO3

confirm the large sensitivity to shear relative to
compression. There does not appear to be a cross-axis
sensitivity.

(2) The current output from a 165.5°-rotated Y-cut gage is
considerably higher than the output from a 163* Y-cut
gage for the same compression loading. This result is
in agreement with the theory.

(3) Because of the large shear sensitivity of the gage,
'4. proper interpretation of the experimental data requires

that the effects of both tilt and anisotropy be included
in the analysis. An elastic-dielectric analysis has
been developed for incorporating these effects in a
quantitative manner in analyzing the data; including
these effects leads to significant changes.

(4) Experimental measurements of the shear contribution to
polarization agree well with theoretical predictions to
within 3 percent.

(5) The quantitative agreement between theory and experiment
is not good for compression loading. The inclusion of
tilt effects makes a significant difference, but
significant discrepancies (10 to 50 percent) remain.
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(6) The theoretical developments presented in this study
have pointed out the complexity in analyzing the
response of rotated-cut crystals. In particular, it is
important to develop a quantitative understanding of the

influence of the boundary conditions on the electrical
fields, that is, evaluate the two-dimensional electro-

static effects.

(7) Large electromechanical coupling effects (current
ramping) were observed in the experiments, but these

have not been modeled. Part of the discrepancy
indicated above could be caused by electromechanical

effects. Future work should incorporate these effects
in the analysis.

(8) We have developed a theoretical analysis to incorporate
electromechanical coupling under combined compression

and shear loading. Numerical procedures for analyzing
experimental data, similar to the procedures in

Reference 15, need to be developed.

(9) Some of the inconsistencies in the experimental data

have not been explained. Theoretical calculations for
the 1630 Y-cut orientation indicate that small errors in

crystal orientations (± 0.2*) can lead to large errors
in the current output for compressive loading. This

result suggests the need for an accurate knowledge of

the gage orientation.

(10) The extreme sensitivity of the gage output to crystal
orientation for compression loading suggests that the
gage orientation that is used should be a compromise
between minimizing the compression output and accommo-

dating the practical constraints on crystal orientation
tolerances. Fortunately, the piezoelectric constant

controlling the shear output is largely insensitive to
changes in crystal orientation.

(11) The optimal shear direction is highly sensitive to the

value of the piezoel ctric constantv e22 Analysis 05

Graham's impact data gives an e2 2 a ue of 1.82 C/m in
contrast to the ultrasonic value of 2.43 C/m . This

discrepancy needs to be resolved. For example, is it
reasonable to neglect i in equation (2-24) in analyzing

the impact data? The tilt contribution in Graham's
experiments is not known. Based on our Iork, we

4. recommend using an e2 2 value of 2.43 C/m
.

(12) Because the compression response of the 663- Y-cut
orientation depends strongly upon the C12 value, this
constant needs to be established accurately.

[.5



These findings from the present work have resulted from a detailed

examination of the shear gage concept, which was the main objective of

N this study. We believe that the development of a piezoelectric shear

stress gage is a realistic undertaking. However, this development will
" require additional research to understand the piezoelectric response in

detail. Some specific recommendations for further work, including the

development of a gage package, are discussed below.

We believe that a basic necessity is to better understand and model

the compression response of the gage. This assertion may be questioned

because the shear response has been modelee reasonably well. The main

reason for developing a better understanding of the compression response

is that in most applications the gage will be sLbjected simultaneously

to a compression and a shear stress. Even if the compression stress is

independently known, the determination of the shear stress from the gage

output requires that the sensitivity to compression stress should be

both small and known accurately. This requirement is necessitated by

two factors. First, in most applications the compressive stresses are

much larger than shear stress. Second, the compressive response of the

gage is very sensitive to the orientation of the crystal.

The general approach to studying the compression response of the

gage should begin by developing a quantitative solution to the two-

dimensional electrostatic problem presented in Section 2.2. The highest

priority should be given to this assessment of the effects of the

boundary conditions because it is necessary for evaluating the complete

response of rotated-cut crystals including the current iE in Eq. (2-24).

This analysis should be verified by modeling both shunted and

shorted gage data for identical impact conditions and comparing these

predictions with laboratory measurements on such gages. Additionally,

numerical methods for incorporating into the data analysis the electro-

mechanial coupling effects described in Section 2.3 should be developed.

If these tasks can be successfully completed, then further

laboratory impact experlients should be conducted to determine the e22

constant very accurately. These experiments need to be of higher

59



precision than the present experiments and should incorporate the

following changes: shunted or shorted gages should be used depending on

the results of the electrostatic analyses; compression-only experiments

without a buffer plate should be performed; the impactor material should

be more nearly elastic; improved measurements of impact tilt should be

obtained; crystal orientation should be determined accurately by several

independent measurements. After the e2 2 constant is determined, the

recommendation indicated in item (10) above should be performed. The

crystal orientation that is selected should then be calibrated carefully

under compressive loading.

Regarding the gage package development, an important first step is

to develop analytic or numerical methods for approximating the stress

and strain distributions expected in the gage in some typical applica-

tions. Because of the anisotropic response of the crystal, this is an

involved undertaking.* Once the mechanical quantities are known, the

polarization and electric field distributions can be determined. Just

as for studying the compression response of LiNbO 3 in the laboratory, in

developing a field gage package, it is important to develop a good

understanding of the electrostatic response of the gage for the

appropriate boundary conditions to evaluate deviations from the

idealized response.

We cannot overemphasize the importance of identifying and under-

standing all the various contributions to the gage output before using

the gage. Without a detailed understanding of these contributions, it

will be nearly impossible to analyze the gage data.

Calculation of the mechanical quantities indicated above will also

be useful in evaluating the inclusion problem: How is the mechanical

,
The development of a numerical method to address this problem would
also be useful in incorporating the crystal anisotropy in the tilt
analysis.
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state of the sensor related to the measurement of interest? The answer

to this question is central to all gage measurements.

* Finally, the development of a piezoelectric shear gage is dependent

upon extending our basic understanding of piezoelectric phenomenon as

indicated in this section. Hence, it is difficult to project accurately

the likelihood of success or time duration for completion of an effort

to develop a field gage package.

j 61

J* . .



SECTION 6

LIST OF REFERENCES

1. Proceedings of the Conference on "Instrumentation for Nuclear
Weapons Effects," M. J. Frankel, Editor, DNA-TR-R2-17-VI and V2

(July 1982).

2. Y. M. Gupta and W. J. Murri, "Development of a Piezoelectric Shear
Stress Gage", DNA 4870F (1978).

3. Proceedings of the Institute of Radio Engineers, 14, 1378 (1949).

4. A. W. Warner, M. Onoe, and G. A. Coquin, J. Acoust. Soc. Amer. 42,

1223 (1967).

5. R. T. Smith and F. S. Welsh, J. Appl. Phys. 42, 2219 (1971).

6. R. A. Graham, J. Appl. Phys. 48, 2153 (1977).

7. F. W. Nielson, in Response of Metals to High Velocity Deformation
(Interscience Publishers, New York, 1961), p. 273.

8. R. A. Graham, J. Appl. Phys. 32, 555 (1961).

9. 0. E. Jones, F. W. Neilson, and W. B. Benedick, J. Appl. Phys. 33,

3224 (1962).

10. R. A. Graham, F. W. Neilson, and W. B. Benedick, J. Appl. Phys. 36,

1775 (1965).

11. R. A. Graham and G. E. Ingram, J. Appl. Phys. 43, 826 (1972).

12. R. A. Graham, Phys. Rev. B, 6, 4779 (1972).

13. R. A. Graham and R. D. Jacobsen, Appl. Phys. Lett. 23, 584 (1973).

14. P. J. Chen, L. Davison, and M. F. McCarthy, J. Appl. Phys. 47, 4759

(1976).

15. R. J. Lawrence and L. W. Davison, in Proceedings of the Symposium
on Applications of Computer Methods in Engineering, L. C. Wellford,
Jr., Editor, (University of Southern California, 1977).

16. R. A. Graham, J. Phys., Chem. Solids 35, 355 (1974).

62

V. ". ," .".-.-. . . . ., .. -.- -.- . . . . . . . - r -.. i , ' .. ,. " . ' . " - . - . " . - .



17. The electrostatic equations presented here can be found in a

standard text such as J. D. Jackson, Classical Electrodynamics

(John Wiley & Sons, Inc., New York, 1962).

18. W. G. Cady, Piezoelectricity (Dover Publications, Inc., New York,

1964).

19. F. Borgnis, Phys. Rev. 98, 1000 (1955).

20. R. N. Thurston, in Handbuch Der Physik, Vol. VI a/4, S. Flugge,
Editor, (Springer-Verlag, Berlin, 1974).

21. W. P. Mason, Crystal Physics of Interaction Processes (Academic

Press, New York, 1966).

22. Y. M. Gupta, Calculation of P and S Waves (COPS): Wave Propagation
Program (unpublished).

23. R. A. Graham, J. Appl. Phys. 46, 1901 (1975).

24. L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 41, 4208 (1970).

25. Y. M. Gupta, J. Appl. Phys. 51, 5352 (1980).

26. Y. M. Gupta, D. D. Keough, D. R. Walter, K. C. Dao, D. Henley, and
A. Urweider, Rev. Sci. Instr. 51, 183 (1980).

27. P. L. Flanders, "Test Sites and Instrumentation," Nuclear

Geoplosics, Part III, DNA Report, DASA - 1285 (1964).

28. P. L. Coleman, et al., "Review and Development of Ground Motion and
Airblast Instrumentation," DNA 4036F (1976).

29. Y. M. Gupta, Appl. Phys. Letters 29, 694 (1976).
at.

30. Y. M. Gupta, "Development of a Method for Determining Dynamic Shear
Properties," Draft Final Report submitted to DNA under Contract DNA
001-76-C-0384 (May 1978).

31. R. A. Graham, "Lithium Niobate Stress Transducers," in Sandia
Technology, Sandia Laboratories Report SAND75-0426 (1975).

32. R. P. Reed, "The Sandia Field Test Quartz Gage, Its Characteristics
and Data Reduction," Sandia Laboratories Report SC-CD-71-4529
(1971).

33. D. B. Hayes and Y. M. Gupta, Rev. Sci. Instr. 45, 1554 (1974).

34. D. R. Grine, "Hardened Quartz Gages for Ground Shock and Airblast
Measurements," Presentation at DNA meeting, Vicksburg, Mississippi

(October 1975).

63

%

%- . -4 %~ "......



35. W. P. Mason, Piezoelectric Crystals and Their Applications to
Ultrasonics (D. Van Nostrand Company, New York, 1950).

36. D. A. Berlincourt, D. R. Curran, and H. Jaffe, in Physical

Acoustics, Vol. I (A), Ed. W. P. Mason (Academic Press, New York,
1964); also see articles in subsequent volumes.

37. F. W. Neilson, et al., Les Ondes de Detonation (Editions due Centre
National de la Recherche Scientifique, Paris, 1962).

38. R.F.S. Rearmon, An Introduction to Applied Anisotropic Elasticity

(Oxford University Press, London, 1961).

39. J. N. Johnson, J. Appl. Phys. 42, 5522 (1971).

40. J. N. Johnson, J. Appl. Phys. 43, 2074 (1972).

41. G. R. Fowles, Private Communication (1980).

i.

4o..

64

% % %



N- APPENDIX A

SYNOPSIS OF THE FEASIBILITY STUDY

A-l MOTIVATION AND OBJECTIVES

-~ The determination of dynamic stresses and loads is fundamental to

much of DNA field testing. The need for these measurements has led to

the development and use of many different types of stress, particle

velocity, acceleration, and displacement gages. 27 ,2 8  Despite the large

* variety and quantity of existing dynamic measurements, field measure-

ments of shear stress (or loads) are lacking. The inability to make

dynamic shear measurements is an important shortcoming because shear

measurements are needed for determining strength properties of both

sails and structures in underground tests.

The need f or shear measurements is well recognized by most workers

involved In dynamic measurements. However, this development has been

lacking due to the complexity of the problem: The desired shear stress

gage must be usable under complex loading conditions, and suitable

methods are needed to calibrate the gage to well-defined shear stresses.

Most of the previous field gage techniques have been extended from

N laboratory concepts and measurements, but laboratory studies are also

lacking in dynamic shear measurements.

The objective of our work was thus to examine the feasibility of

developing a piezoelectric shear stress gage for use in DNA field

tests. A combined analytic and laboratory experimental effort was

The Introduction and Summary section of our feasibility work described
in the DNA Report 4870F (December 1978) is presented here. To aid the

- reader, this Appendix has its own set of references. Because the
report was written more than five years ago, not all the statements
reflect the author's current thoughts.
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undertaken to meet this objective. The bases for this work are recent

developments at SRI relating to the study of dynamic shear prope.ties of

solids 2 9 '3 0 and the use of piezoelectric gages in studying dynamic
compressive stresses.1 0 ,13, 31 -34

s s

A.2 BACKGROUND AND APPROACH

," Piezoelectricity and the use of piezoelectric transducers and

devices in acoustic applications is a major field of study.18,35,36

However, the use of piezoelectric transducers for measuring large stress

amplitudes under dynamic loading is a more recent and specialized

topic.3 7  Studies during the past decade have led to the development of

stress transducers for studying dynamic compressive stresses up to tens

of kilobars in materials subjected to impact, explosive, and radiation

loads. 10 ,13 ,3 1- 3 4 Studies by Graham and co-workers have clarified

*" piezoelectric response at high stresses and established bounds on the

use of stress gages. 11 '12 '23  The formulation of nonlinear piezoelectric

constitutive relations has also received increased attention. 12 '2 0  In

many laboratory and field measurements, a-quartz is used as the gage

material, but recent studies have also been conducted using lithium

niobate (LiNbO3 ).
6  For low stresses (below 10 kbar), the larger

electrical output of LiNbO3 is advantageous.

Piezoelectric gages are used in two modes. The current or short-

circuit mode measures fast rise time, short-duration stress pulses, and

the useful recording time of the gage is the wave transit time through

the gage. Laboratory shock wave experiments with zero lateral strains

commonly use the current mode. In the charge or open-circuit mode, the

gage is used to record slower rise time, long-duration (millisecond)

pulses. This second mode is more commonly used under field conditions

for recording stress pulses with wavelengths much greater than the gage

thickness. That is, the gage in the charge mode acts like a static

transducer in equilibrium with the surrounding material stresses. No
fundamental differences exist between these modes with regard to the

piezoelectric response, and the laboratory results are applicable to
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field usage. The differences in these modes are operational and

reflect the mechanical boundary conditions most suited for using the

gages in different applications. Further discussion of these two

operational modes is given in Reference 31.

Despite the many laboratory and field developments in the use of

the above-cited modes, measurements to date have been performed exclu-

sively for compressive stresses. In the following paragraphs we discuss

our approach for developing a piezoelectric shear stress gage for use in

dynamic loading conditions in the presence of complex stresses.

The two general requirements in the development of a shear gage

are: (a) knowledge of a material phenomenon (e.g., appropriate

piezoelectric response) relating shear stress to a measurable quantity

and (b) the ability to calibrate the gage for known shear stresses.

The first requirement is easily satisfied, in principle, because of

the existence of many shear transducers in the field of ultrasonics.3

Because the compressive stress gage is an extension of ultrasonic

concepts, these concepts can be explored for the development of a shear

stress gage. There are, however, complicating factors that do not allow

a simple extension of ultrasonic concepts. In ultrasonics, pure shear

waves are commonly created by using the converse piezoelectric effect.

Thus, the measuring transducer is subjected to a pure shear motion. In

most dynamic loading situations, a complex stress state exists--that is,

% superposed compression and shear states. Furthermore, because of the

large stresses, the material in which the gage is placed undergoes

"P, inelastic deformations, and the relative magnitudes of the compression

and shear stresses are expected to vary over the time range of interest.

For the gage measurements to be useful, the electrical signal from the

gage should be uniquely related only to the shear stress of interest.

Because of the tensorial nature of piezoelectricity, this requirement is

not met by most of the ultrasonic shear transducers.

* The electromechanical coupling will be different for the two cases.
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To satisfy the above requirement in the presence of complex

stresses (e.g., combined compression and shear), we developed an

analytic approach that consists of simultaneously examining wave

* propagation and piezoelectric relations for materials of interest. The

analytic approach chosen is general and provides criteria for deter-

mining the needed gage designs. We examine all possible crystal

orientations to obtain the optimal directions for piezoelectric response

and to determine pure mode directions ("specific directions") for stress

19
wave propagation. Once the optimal gage designs have been

analytically evaluated, we can conduct experiments to verify and

calibrate these gage designs.

The second requirement, calibration of the gages, is met by

experimentally studying the gage response to one-dimensional compression

and shear waves using the recently developed IMPS* experimental

facility.t In this method, the specimens are subjected to varying but

controlled amounts of compression and shear stresses. By subjecting the

gages to pure compression, we can ensure that there is not electrical

output from the compressive stress. Increased amounts of shear stresses

can then be superposed to calibrate the response to shear. Because this

is a feasibility study, the present scope of the work is intended to

experimentally verify the theoretical concepts. A. detailed calibration

would be performed after the feasibility of the shear gage has been

established.

A.3 SUMMARY

The objective of the work reported here was to examine the

- feasibility of developing a piezoelectric shear stress gage sensitive

only to shear loading. Using a combined analytic and experimental

approach, we successfully demonstrated the feasibility of developing

such a gage.

*nternal Measurement of P and S Waves.

tWork performed under DNA Contract DNAOO-76-C-0384.
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A simplified but general analysis of the mechanical and piezo-

electric response was performed to provide criteria for a suitable shear

gage. Mechanical wave propagation analysis in anisotropic electic media

showed that, in general, three waves are propagated: one quasi-

longitudinal and two quasi-transverse waves. Only for "specific

directions" are the propagated waves purely longitudinal and/or purely

transverse. To avoid mechanical coupling of strains, the gage thickness

direction should be along a specific direction. The piezoelectric

analysis showed that electrical polarization for the desired gage should

be one-dimensional and along the gage thickness direction. Furthermore,

this electrical polarization should be caused only by shear loads and

not compressive loads.

The adequacy of a particular crystal type for meeting the above

criteria can be easily and efficiently assessed by numerical calcu-

lations of the specific directions and the "piezoelectric matrix" for

all possible orientations about the three crystallographic axes. When

these calculations were performed for the different orientations of

a-quartz and lithium niobate (LiNbO3 ), only the 1630 Y-cut LiNbO 3

appeared suitable for use as a shear gage. For this orientation, the

shear-to-compression sensitivity ratio for the polarization is enhanced

by more than two orders of magnitude. Furthermore, this orientation

deviates only 20 from a specific direction and therefore has minimal

mechanical coupling.

Impact experiments were conducted under combined compression and

shear to verify the use of 1630 Y-cut LiNbO 3 as a shear stress gage.

The results of these experiments show that the gage, as desired, had

negligible sensitivity to compressive stress and a very large

sensitivity to shear stress.

Further development of gages for routine use in laboratory and

field measurements requires calibration experiments that can be

performed using the same impact facility. In addition, field usage

requires development of proper packaging techniques.
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APPENDIX B

WAVE PROPAGATION ALONG NONSPECIFIC DIRECTIONS

An important aspect of the present work involved elastic wave

propagation along different crystal orientations. In this Appendix, we
.

briefly describe and summarize analytic developments pertinent to the

analysis of our experimental results. Studies by Borgnis,
1 9 Hearman,2 7

and Johnson 28 serve as a basis for the developments presented here.

As indicated in Section 2.2, the mechanical wave propagation cannot

be uncoupled from the external electric circuit for a crystal such as

LiNbO 3. However, the initial Jump can be analyzed using elastic

constants at constant electric displacement (CD ). Here, we present

some general developments, and calculations of specific directions; then

we describe numerical calculations for analyzing impact data along non-

specific directions. The relationship between C j and CE is also

derived in this Appendix.

The rotation transformation of coordinate axes defined and used in

- this Appendix is not consistent with the other parts of the report.

B.1 GOVERNING EQUATIONS

We consider two coordinate systems: 2 8  xi corresponds to the

L"1j crystallographic system and xi corresponds to the wave propagation

system. Wave propagation is described by

2 2
u U'
2 ijkl ax x(

wtere

P = density

1' = material displacement along the x'-direction
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t = time

CI  = second-order elastic constants in the primed system.
.- . ijkl

The transformation matrix between the unprimed and primed system is

given by

a =e' *e (B-2): "mn m n

4 + 
I

where e' and e are unit vectors along the xm and xn directions.
m n

Plane wave solutions for equation (B-1) for wave propagation along

a direction b' are given by

u' = A ' f(t - b'x'/c') (B-3)

where

Ai- displacement amplitude along xi

c' = wave velocity.

Substitution of equation (B-3) in (B-1) gives the following equations:

2
_kik -

6 1k pc' J A 0 (B-4)

where bb C'
"ik I C-(B

and 5 is the Kronecker delta. For nontrivial solutions of equation

(B-4), we have the condition

""k -ik PC' = 0 (3-6)

7 quation (B-6) has three possible eigenvalues, each of which corresponds

to an eigenvector A'. Each of the elgenvalues and eigenvectors
m

represent the wave velocity and displacement amplitude associated with

one of the three waves. These displacements are always mutually
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orthogonal but can have an arbitrary orientation with respect to the

wave propagation direction b'. Only for specific directions (or

isotropic materials) are the displacement directions either parallel

(longitudinal waves) or perpendicular (shear waves) to the direction of

wave propagation. 19  In general, there is one quasi-longitudinal wave

* and two quasi-transverse waves.

In our experiments we are subjecting the gage to externally applied

compressive and shear stresses. If the gage output is to be related to

a particular stress component (shear stress in the present case), then

coupling of the stresses within the gage must not occur. For the linear

elastic behavior considered here, this coupling can arise only as a

* result of the anisotropy of the crystal. Therefore, the crystals used

for gage development should be oriented along the specific directions

for the compressive and shear waves of interest in our experiments.

In the remainder of this Appendix we restrict our analysis to thea"

crystallographic Y-Z (X2 -X3 ) plane of LINbO3 crystals.

B.2 WAVE PROPAGATION IN THE Y-Z PLANE OF LiNbO3

Let the direction of wave propagation be b' = (0, b2, b3). The

components of %' of (B-5) are given by

, b2 (C - C12 )/2 + b 2C + 2b b CKl 2 i 3 C44 23 1.4

', b 2  +b 2 C -2bb 3 C22 2 11 b3 344 2 14

, 2 2

b' 2b C + b 2C
"33 2 C44 3 33

(B-;)

%I =b 2  C +bb( C + )
23 2 C 14 +b 2b 3  13 44

i3
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The eigenvalues Q (- pc' 2) of equation (B-6) are given by

Q (B-8)

(X2 - Q)(X33  Q) - X12  ' 0 (B-9)

The solution of equation (B-9) gives the two eigenvalues Q2 and Q3 "

Q1 has an eigenvector along (1, 0, 0); of the three waves that can

propagate in any particular direction in the Y-Z plane, one is always

pure shear wave with particle motion along (1, 0, 0). The eigenvectors

corresponding to Q2 and Q3 can be calculated using the usual

procedures. We have written a program that calculates the eigenvalues

and eigenvectors for wave propagation in the Y-Z plane for all

orientations. Wave velocities needed in our work were calculated using

this program. This program is also useful in determining the effects of

small deviations from the specific directions.

In our work we have used the general procedure described by

Borgnis 19 for calculating specific directions. A vector p that

represents a specific direction is both parallel to t' and is an

eigenvector of equation (B-6). Hence, p is one of the form (0, P2, P3),

satisfying the relation

p x ' P2b b - 3b 0 (B-10)

and its components are given by

S22 b2 + X23 b3 P2

• (B-Il)

'.b2 + ' b3 - P3
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* 4,

Substituting equation (B-i) in (B-1O) and using the values of Xlk from

equation (B-7), we can write the equation for specific directions in the

Y-Z plane (b2 
3  

(b) 3

I-1(C 3 3 - 2C 44-C ) + 3C14_

b (B-12)

+:. 2 (C13 - C11 +2C 2 4  - C14 = 0

The solution to this cubic equation gives the specifc directions. Using

the CDj values from Warner et al., 4 we calculated the three specific

directions in the Y-Z plane for LiNbO 3 as follows:

-(0, 165.44', 75.44')

(0, 45.99%, -44.0l')

(0, 104.08', 14.080)

B.3 IMPACT CALCULATIONS FOR ARBITRARY DIRECTIONS

Johnson2 8 has described an analytic method for calculating the

impact response of anisotropic solids. He was also the first to suggest

the use of a Y-cut quartz crystal for generating large-amplitude

compression and shear waves in other materials. In our present work we

need to analyze the impact response of various rotated-cut crystals.

Unlike Johnson, we chose to use a one-dimensional wave propagation

program to perform the needed calculations. This numerical method is

briefly described below.

Most one-dimensional wave propagation programs are restricted to

uniaxial strain problems. The COPS cole 22 was developed to include both

compression and shear wave propagation in solids. However,the code's

treatment of the governing eqLations is not completely general, and the

material is assumed to be isotropic. In adapting this program to our

present needs, we had to make two changes: we generalized the treatment

of the governing equations and wrote a subroutine to incorporate an
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anisotropic constitutive relation. In conformity with the rest of our

work, we are restricting our development to small strains. Changes to

incorporate finite strain for the elastic deformations considered here

are straightforward.

The direction of wave propagation is along the xl-axis. The

governing equations for the generalized one-dimensional wave propagation

can be written as

45,_ x (B-13)

t

* . 1

= ' i6 (B-16)

Here, p is density, v' is the particle velocity (u:) and c is thei ' -

specific internal energy. The energy equation is not used in the

remainder of our discussion.

The artificial viscosity relations are generalized by defining the

viscous stress as follows29 (repeated index notation is not used):

2 1'[;:'
P[Mi (AXI) I i~ 1,i-i (B-17)

Mi and Ni are coefficients for quadratic and linear viscosity,

: 'respectively; Ax' is the spatial increment in the wave propagation

solution. The viscous stresses are used in the usual manner.29

We chose this axis to conform to the existing notation in the COPS
program. In using the results for our work, indices have to be

i changed appropriately.
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The constitutive equation in the crystallographic system, assuming

isentropic deformations is written as

a i M C ij k (B-18)
m -

This is the usual form of the linear elastic relation and is derived by

expanding the internal energy function about an initial state. The

elastic constants used in our calculations assume a constant electric

D
displacement: C .Cijk

Equation (B-18) can be used in the wave propagation program either

by transforming equation (B-18) to the primed system or by transforming

stresses and strains back and forth between the two systems. We found

the latter procedure to be convenient. The subroutine ANELAS, written

F- to implement this procedure , consists of the following steps:

(1) Transform the strains in the xi-system obtained from equations
(B-14) and (B-15) into the crystallographic (xi) system.

(2) Change the strains into the matrix notation.

., (3) Evaluate stresses using the matrix form of equation (B-18).

(4) Convert the stresses into the tensor notation and transform
them back into the xi-system for use in the momentum equations
(B-13) for the next time increment.

The conversion between the matrix and tensor notation can be

avoided by developing a procedure for transformation using the matrix

notation.

To minimize the modifications to the wave propagation program, we

always chose x,-axis as the direction of wave propagation. This

restriction coupled with the IRE convention3 for rotated-cut crystals

leads to the following rotation transformation matrices.

. *This subroutine is valid for crystals of three of the five classes of
the trigonal system and for all crystals of higher symmetry.
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Rotation about xl-axis: This notation defines the rotated Y-cut

crystals. The xI- and x3 -axes are taken to be coincident. The

transformation matrix for going from the crystallographic to the primed

system is given by

0 -CsE ine)
aij = ee c os (B-19)

1 0

where 8 the angle of rotation about the xl-axis. For most of our

calculations, this rotation matrix was used with ( e - 1630 or

165.50). The inverse transformation is given by the transpose of the
I I

matrix in (B-19). Thus, xi = aij xj and xi = aji xj.

The results of the numerical calculation can be adapted to the

convention used in the main text of the report by incrementing, as

follows: 1 + 2, 2 + 3, 3 + 1.

Rotation about the xj-axis: The x2- and x3 -axes coincide. The

transformation matrix for going from the crystallographic system to the

primed system is given by

sine 0 cose

aij cose 0 -sine@ (B-20)

[0 1 0]

The inverse transformation is given by the transpose of this matrix.

Rotation about the x3-axis: The x3- and x3 -axes coincide. The

transformation matrix analogous to the previous matrices is given by

cose sine 0

a ij = -sine cose 0 (B-21)

The inverse transformation is given by the transpose of this matrix.
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Several impact situations were simulated to ensure that the

numerical procedure was correct. One particular calculation involved

the simulation of Johnson's 28 analytic solution for the case of Y-cut

quartz being impacted by X-cut quartz. In Figure B.l the free-surface

velocity-time profiles using Johnson's notation are compared with his

analytic solution. As expected, the numerical solution showed the

rounding due to the incorporation of artificial viscosity. The

amplitudes are identical even for the small particle velocity component,

v2 . The wave velocities are in excellent agreement when the midpoint in

the numerical solution is used.

S .. B.4 RELATION BETWEEN CDj AND C~j

The paper by Smith and Welsh5 lists only the elastic constants at
constant electric field C E Because we need C D in our calculations,

the relation between the two sets of constants is derived below. Taking

.- the electric field and the strains as the independent variables, we

%.' write

= j (E , E ) (B-22)

Differentiating with respect to strains and kee-ing the displacement

." field constant, we have

/ \ (B-23)
k1 )D EDu

Using the Maxwell relations -(a ijl/Em 3 m_/6,l ij), we obtain

CD E - I m \ Em (B-24)ijkl CijklZ \ E../\
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1.4

- - - Analytic Solution (Johnson)
1.2 Numerical Solution (Present)

1.0 -1.012 r

0.8 r 1 0.789

J 0.78
0.6

V3
- 0.4 v3

0.2

02

-0.2
0 1.0 2.0 3.0 4.0

t/L (s/cm)

Figure B.1. Free-surface velocity in Y-cut quartz impacted by X-cut
quartz. (The particle velocities have been normalized with
respect to the impact velocity, and the propagation time
has been divided by the sample thickness. For this
calculation the direction of wave propagation was chosen
to be along the xi-axis in conformity with Johnson's
notation. Note the small value of v2.)
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Because of the summation over "m" in the last term and because the

permittivity is a tensor, care must be exercised in simplifying equation

(B-24). For principal cuts in trigonal crystals, the permittivity

tensor has only diagonal terms, and equation (B-24) can be simplified

easily. Using the matrix notation and the definition of the piezo-

electric constants, we can write (no summation convention)

el elo e e e e
E ao ' + + E E + -- (B-25)

11 2233

where EE is permittivity at constant strain. In writing equation
* ij

(B-25), the following relation involving partial derivatives is useful:

(b y 6z

(L'y) z Z)x (T) = -i (B-26)

* !We emphasize that equation (B-25) was derived by assuming that the

electrical permittivity tensor has a diagonal form. Adapting equation

(B-25) to rotated cuts requires care.

In Table B-1, we present the CD values calculated from the C .

values of Smith and Welsh. To check our calculations, we also
calculated the CDj values using the cEj values of Warner et al. Except

for c 2, our calculated C values match those of Warner et al.

.

f 1

d *After equation (B-24) is written for a few terms, the general relation
can be easily deduced.
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Table B-1.. Elastic constants at constant displacement.

-CD (10 11 N/rn2) Smith and Welsh (Ref. 5) Warner et al. (Ref. 4)

C12.183 2.19

CD0.425 0.371
12

CD0.764 0.76

C14  -0.148 -0.147

C D 2.495 2.52

CD0.956 0.95
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-; APPENDIX C

DETERMINATION OF PIEZOELECTRIC CONSTANTS FOR LiNbO3

Graham 6 performed an impressive series of impact experiments on

three different orientations of LiNbO3 crystals: Z-cut, Y-cut, and

360-rotated Y-cut samples. His experiments with the Z-cut LiNbO 3

provide a direct determination of the e33 constant. Using the measured

e3 value and the e31 value cited in the literature, Graham also

calculated the e22 and e15 constants from his Y-cut and 36*-rotated Y-

cut data. Table C-1 lists the constants reported by Graham,6 Smith and

Welsh,5 and Warner et al. 4  Constants from other studies are listed in

*" Table VI of Graham's paper.

In most of our work, we used the results of Smith and Welsh5 except

for the e33 constant tor which we used Graham's value. This was a

reasonable procedure because the differences in the other two constants

*are small. In Appendix D we use these values to calculate the eiJ

matrix for rotated cuts of interest. Using all the constants from

Graham's work gives 163.60 Y-cut as the optimal direction for a shear

gage rather than the 1630 Y-cut orientation that we used in our work.

This difference borders on the accuracy with which these crystals can be

cut.

Because Graham's data were not appropriate fEr determining e31 , he
used the e 31 value given by Smith and Welsh. Because e 31 is small,

the other constants are not very sensitive to its value.
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Table C-i. Second-order piezoelectric stress constants (C/m2 ).

Author e22  e33 e1 5 e31

Warner et al., 2.5 1.3 3.7 0.2

1967 (Ret. 4)

Smith and Welsh, 2.43 1.33 3.76 0.23
1971 (Ref. 5)

Graham, 1977 2.37 1.80 3.83 0.23*
(Ref. 6)

When analyzing our impact data, we realized that the analysis of

wave propagation in a nonspecific direction requires a general aniso-

tropic analysis. Such an analysis for one-dimensional wave propagation

is discussed in Appendix B. In analyzing the Y-cut and 360-rotated

Y-cut crystals, Graham 6 used a uniaxial strain analysis. Although his

analysis was approximate, the small deviation from uniaxial strain was

assumed to be insignificant. We reanalyzed the Y-cut and the 36°-rotated

Y-cut data of Graham using the anisotropic analysis presented in the last

Appendix. Our procedure, described below, leads to different values for

e22 and e15 than those obtained by Graham.

For Y-cut and 360 -rotated Y-cut crystals a normal impact results in

a quasi-longitudinal and two quasi-shear waves, not simply a

jlongitudinal wave (uniaxial strain). For describing the response of

these crystals, we consider the following coordinate system: X I is

along the crystallographic Xl-axis, X2 is along the gage thickness

direction, and X is chosen to form a right-handed coordinate system.

*3

See footnote on previous page.
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For plate impact loading, all the quantities vary only along the X2-

dtrection and the strain tensor has three independent components: E2 ,

E2 1 (- i2' ), and E' (- E'2"

The polarization along the gage thickness direction, P2 ' can be

written using the matrix notation

Pi ' e' C' + e ' (2-23)
2 22 2 24 E4

There is no contribution from the e2 6 E' term because e26 is zero. In

his approximate analysis Graham ignored the contribution of the second

term in equation (2-23). Although c4 may be small, the large value of

the piezoelectric constants requires that both terms be considered in

analyzing the data.

Instead of analyzing all of Graham's experiments, we used the

following averaging procedure.

(I) Because we are not interested in constants beyond second order
we used the six experiments for each orientation that gave a

linear polarization-strain curve. The polarization/strain
ratio was averaged over the six experiments to account for
experimental scatter. These values, in Graham's notation, are
as follows:

p2  - -2.38 C/m2

Y-cut

= -4.65 C/i2

1 360-rotated

where r is a measure of finite strain.

(2) One experiment for each cut that gave a P2/n value close to
each of these values was selected for simulation using the

The difficulty of relating the current output to the polarization for
a rotated-cut, discussed in Section 2.2, is ignored here as it was in
Section 4.
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anisotropic analysis. For the Y-cut crystals, we chose
experiment No. Q-1056 that gave a value of 2.39, and for the
36*-rotated Y-cut crystals, we chose experiment No. Q-1095 that
gave a value of 4.64. Using the average polarization/strain
values given above, we calculated the polarization values for
each of these two experiments. This procedure allows us to
average over the various experiments and keep the polarization
calculations independent of Graham's strain values.

Using our modified COPS code,2 2 we numerically calculated the

mechanical variables for the two experiments cited above. The LiNbO3

elastic constants Cj used in these calculations were derived from the

Cij values reported by Smith and Welsh5 (see Appendix B). The results

from these calculations, along with Graham's uniaxial strain

calculations, are shown in Table C-2. The deviations from uniaxial

strain are small. However, as noted earlier, the contributions of the

E' term to the polarization are significant.4

Using the transformations for eij , we can express equation (C-1) in

terms of eij values for rotations about the XK-axis. After some

algebraic manipulation, it can be shown that

3 2 3 +cs2
2 2 2 2 ( 2 (C-)

+ e , CS 2 E (2c2s E + c3  cs 24 )

31 (cse 2  4) + 1 5  E4  4

where c - cos e, s - sin 8, and 8 is the angle of rotation about the Xl -

axis. For Y-cut (8 - 0*) and Z-cut (8 - 90*) crystals, equation (C-1)

is considerably simpler,

Y-cut LiNbO : P' - e E + e El

3 2 22 E2 154-. (C-2)

Z-cut LiNbO P e E(
3 2 33 2

*When the C, values from Warner et al. were used, the calculated

stresses anA strains were close, as indicated in Table C-2.
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For other orientations, we have to consider all the terms in equation
(C-i).

Using the strain values from Table C-2, the value of e31 - 0.23

C/m2 from Smith and Welsh,5 and e3 3 - 1.80 C/m2 from Graham's work,6 we
can write the polarization for the two orientations as follows:

Y-Cut (Q-1056): 2.24 e2 2 - 0.28 e15 - 5.26 C/m2  (C-3)

36-Rotated Y-Cut (Q-1095): 0.99 + 1.34 e2 2 + 1.78 e15 - 11.47 C/m2

As indicated earlier, the polarization values on the right side of these

equations represent an averaging over six experiments for each orienta-

tion. Thus, there are small differences between these polarization

values and those reported in Graham's paper for these two shots.

Solving the equations for e1 5 and e22 gives

e15 = 3.76 C/m
2

e 2(c-4)
e 22 ' 2.82 C/m

2

4.. The e1 5 value is identical to that of Smith and Welsh 5 and is less than

2 percent different from the value reported by Graham.6 However, the

e22 value is considerably different from the value calculated by Graham.

Although we have results for both 163°-rotated and 165.5°-rotated

Y-cut orientations, we made no attempt to calculate e31 or a complete

set of constants using our experimental results in conjunction with.

Graham's data because the two sets of experiments used different types

of gages.

-.,
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The analysis of Graham's data 6 described here suggests that the

following values be used for the second-order piezoelectric stress

constants of LiNbO3.

" e2 2 -e 2.82 C/m
2

, e3 3 - 1.80 C/m
2

e15 m 3.76 C/m
2

e 0.23 C/m
2

For developing a shear stress gage, this new set of constants gives

160.5*-rotated Y-cut, rather than 163*-rotated Y-cut, as the optimal

crystal orientation. This point is discussed further in Appendix D.

..- . . . .

% 4%. . ,Recall that the complexities in analyzing results for rotated-cut
- . crystals discussed in Section 2.2 have been ignored.
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APPENDIX D

TRANSFORMATION OF PIEZOELECTRIC CONSTANTS

This appendix describes a simple and convenient method for

determining the crystallographic orientations best suited for

piezoelectric gage applications. Although considerable information

exists on piezoelectric constants along particular directions, the

method presented here is more general and convenient for the applica-

tions of interest.

The piezoelectric stress coefficients (eijk) and the piezoelectric

strain coefficients (dijk) are defined by

Pi , eijk 6jk (D-1)

Pi - dimn amn (D-2)

where the piezoelectric stress and strain coefficients are related by

eijk = dipq Cpqjk (D-3)

,, Because the piezoelectric constants are third-rank tensors, they are

transformed as

eijk aip ajq akr epqr (D-4)

For the rotated Y-cut crystals (rotation about the crystallographic X-

axis) used in our work, the rotation matrix can be written 
as

This matrix is compatible with the coordinate system used in the main
text. It is obtained from equation (B-19) by incrementing the indices

of the coordinates in the manner given following equation (B-19).
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l0
a [r cose sin (D-5)

L0 -sine cosoJ

For LiNbO3 , combining (D-4) and (D-5) gives

e22 = c e22 + s e33 + + 2 e1 5 ) (D-6)

e24' -c2 se22 + (c3 - cs 2 )e15 + cs
2 (e3 3 - e3 1 ) (D-7)

where we have used the matrix notation; c and s denote cosO and sine,

respectively.

To determine the optimal orientation for a shear gage we need to

minimize the piezoelectric constant corresponding to the normal straia

along that orientation and maximize the piezoelectric constant

corresponding to the shear strain of interest. By using the numerical

method outlined here, we can quickly determine the optimal orientation.

Essentially, the method consists of implementing the transformations

indicated in equations (D-3) and (D-4).

In defining the coordinate rotations for our work, we chose the

Institute of Radio Engineers (IRE) conventions, 3 instead of the usual

solid angles. We numerically solved equations (B-I) and (B-2) for

coordinate rotations between 0* and 1800 about the crystallographic X-,

Y-, or Z-axes. The numerical program has the following inputs.

(1) The axis of rotation, denoted as 1, 2, or 3 for the
crystallographic X-, Y-, or Z-axes, respectively.

(2) The crystal type and the piezoelectric matrix (numerical
values) in the crystallographic system.

The above input is used to determine the rotated constants as

follows:

(1) Change the piezoelectric constants from the matrix to tensor
notation.
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(2) Construct the transformation matrices for the rotation angle.

(3) Transform the piezoelectric tensor.

(4) Convert the transformed tensor back to the matrix form.

(5) Print out the angle of rotation and the transformed
piezoelectric matrix.

(6) Repeat the above steps for all desired angles.

The differences in converting e and d values from matrices to

tensors and vice-versa are included.

The piezoelectric constant matrix for LINbO 3 has the following

form:

0 0 0 0 e 1 e-e

eij -e22 e22 0 e15  0 0 (D-8)

31 31 33

As indicated in Appendix C, we initially used the piezoelectric

constants cited by Smith and Welsh 5 except for the e3 3 constant, which

was taken from Graham's shock work.6  Of all the piezoelectric

constants, the measurement of e3 3 from shock experiments is most

reliable. Thus, the constants for the "old set" are

2 = 2.43 C/m
2

e33 - 1.80 C/m
2

el5 = 3.76 C/m
2  (D-9)

S31 = 0.23 C/m
2

The e22 and e1 5 values are slightly different from Graham's values (see

Table C-1).

Our examination of Graham's work indicated that some of his

assumptions may not be valid. Hence, we reanalyzed his data as

described in Appendix C. The "new set" of constants as calculated by

the improved analysis have one significant difference: the value of e2

is 2.82 C/m 2 . The otlher constants ,(mre the same- as [iid cat,4l above.
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As an example of the numerical procedure outlined in this Appendix,

we show the piezoelectric stress matrix (eij values) for LiNbO3 rotated

about the crystallographic X-axis in Tables D-1 and D-2. The values

shown are for the two sets of constants and for orientations between

1628 Y-cut and 1640 Y-cut. A scan of Table D-I shows that, for gage

thickness along the X 2-axis, the constant e22 is minimized for 163* Y-

cut orientation. Small changes in orientation lead to significant

changes in e22 values. The e24 value is relatively constant.

The new set of constants (only e2 2 is different) yield a

signLFicantly different value of e22 for the 1630 Y-cut orientation.

The optimal direction using the new set of constants is the 160.50 Y-cut
-3 2

orientation with an e22 value of 3.65 x 10 C/m . These results

highlight the need for an accurate determination of e22 .

Results shown in the two tables are useful in rapidly determining

the effects of crystal orientation on the gage response. For example,

the e24 constant is relatively insensitive in contrast to the e22

constant.

[ ,.,
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APPENDIX E

OBLIQUE IMPACT OF ELASTIC PLATES

In this Appendix we describe the theoretical analyses for

evaluating the effects of impact tilt (or misalignment) on the results

of our experiment. This analysis is not exact because the LiNbO 3 is

treated as an isotropic solid. Nevertheless, it provides considerable

insight into the effects of tilt. Figure E.1 shows the experimental

configuration we analyzed. The notation used here is not consistent

with that in the rest of the report. However, the notation, as defined

here, is self-consistent. The Xl-system is defined such that the X'-

axis is normal to Plates 2 and 3. Plate I has a velocity vo along the

positive X-direction. The tilt angle, 0, is zero for an ideal

impact. The situation depicted in Figure E.1 is valid for both

compression-only and combined compression and shear experiments; 0 is a

measure of the deviation from parallelism at the instant of impact.

Hence, the initial inclination of the plates to the direction of

projectile motion is immaterial.

As indicated in Section 3, not only is the tilt angle important

in analyzing the results but so is the orientation of the line of con-

tact relative to the Xi axes. Angle t defined in Figure E.1 determines

the orientation of this line. The Xi-system shown in Figure E.I is

The angle 9 defined here denotes a different physical quantity than
that defined in Figure 2 of Section 3.

tThe two angles $ defined here and in Figure 6 of Section 3 both

denote the orientation of the line of contact, but they are given rela-

tive to differing axes of reference.
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1 2 3

2

0X
x3

Figure E.1. Experimental configuration for evaluating tilt effects.
(In the top figure, X' is directed out of the plane of
the figure. In the bottom figure, X; is directed into
the plane of the figure. Angle 0 is counter-clockwise
when looking from the positive X i axis toward the
origin. The X1 - and the X; -axes coincide.)
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obtained by a counter-clockwise rotation through * about the Xl-axis
when looking from the positive Xl-axis (X1 and X1 coincide). The X2 -

axis is parallel to the direction in which the line of contact,

traverses Plate 2. The Xi-system is important because most of the

analysis is performed for this system.

In our analyses we considered both "no slipping" and "complete

slipping" at each of the two interfaces (between Plates I and 2 and

between Plates 2 and 3). These represent the two extremes for

conditions at these boundaries, and the extension to intermediate

conditions is straightforward.

On impact of Plate 1 with Plate 2 two waves that propagate away

from the interface are generated in each of the plates, as shown in

Figure E.2. We have divided the analysis of the propagation of the two

waves into Plates 2 and 3 into five parts: Part I analyzes the impact

shown in Figure E.2; Part II analyzes the interaction of the

compressional wave P(I) with the interface of Plate 2 and Plate 3; Part

III analyzes the interaction of the shear wave S(2) with this interface;

in Part IV, the stresses and particle velocities from the first three

parts are summed in the Xi-system; finally, in Part V, all the

quantities are transformed to the Xi-system.

Because of the numerous waves considered in the analysis, it is

helpful to establish the nomenclature, then to review the general

solution procedure.

E.1 NOMENCLATURE

Dpi P-wave velocity in the ith material

Dsi M S-wave velocity in the ith material

um W Normal particle velocity behind the mth wave

vm =Shear particle velocity behind the mth wave

Zi , Pi Dpi - Compression mechanical impedance for

the ith material

Zsi - PiDsi - Shear mechanical impedance for the ith material
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S. v

Plate 1 Plate 2

X3  x

,2 X01

P(3) / I P()

S(4) I S2)

Figure E.2. Oblique impact of two elastic plates. (The four wave
fronts generated upon impact are shown. The arrow
behind a wave front represents the direction of particle
motion caused by the particular wave.)
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ai M Angle with the interface made by the P-wave in the ith

material

0i - Angle with the interface made by the S-wave in the ith

material

Xm - Normal stress behind the mth wave; m is an odd number for

P-waves

vi - Poisson's ratio for the ith material

Pj Density of the ith material

-Shear stress behind the mth wave; m is an odd number for
P-waves

Note, X and u are unchanged by a shear wave, and T and v are

unchanged by a compression wave. The subscripts with X and T always

identify the wave and do not imply the indices commonly used with.the

stress tensor.

E.2 SOLUTION PROCEDURE

The oblique impact shown in Figures E.I and E.2 is analyzed using

the attached-shock approximation. This approximation is valid for small

tilt angles because the velocity of the point of contact is much larger

than the wave velocities in the material

vc tan - sine (E-)

Two other approximations are used to simplify the mathematical analy-

sis:t (1) the turning angle of the impact interface is neglected, as

Even for the largest tilts in our experiments (e = 0.1), vc is
116 mm/ps in contrast to a P-wave velocity of 3 mm/ps in PMMA.

, tFor the first part of the five-part analysis (given above) we analyzed

a more general problem that avoids these assumptions. Because of the
complexity of the equations, numerical results were not computed.
However, the solution for the more general problem had no significant

differences.
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shown in Figure E.2, and (2) in choosing the S-wave velocity, we neglect

the density changes behind the P-wave.

On impact, compression and shear waves are produced in both

Plates I and 2. The inclination of these wave fronts can be written

using Snell's law as

,in s I i  1 sin 2  sine2 _ (E-2
D = Dp- Ds2 v (E-2)

4 :p1 si p2 s2 0

The particle motion behind each wave is assumed to be that shown in

Figure E.2. The choice of the particle motion directions is not

important because these are determined from the final solution.

Throughout the discussion we use a right-handed coordinate system

with the X3-axis coming out of the plane of Figure E.2. The coordinate

systems needed for analyzing the flow behind Rach wave front are

obtained by a counter-clockwise rotation of the Xi-system about the X3 -

axis. Tensile stresses and strains are taken to be positive. The

notation used for shear stresses and strains is compatible with this

sign convention. The simplest procedure to ensure consistency of signs

is to determine the signs using the flow equations and the definition of

strain.

The solutions in the first three parts of the analysis are

obtained by combining the linear elastic constitutive relations with the

appropriate boundary conditions at each interface. In each part there

are four unknowns, and four boundary conditions are required to solve

the problem. Two of these boundary conditions are common to all

situations:

Although there are several stresses and particle velocities, the
problem always reduces to four unknowns because of the additional
relations provided by the jump conditions and the constitutive
equations.
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(1) The normal stress is continuous across the planar
interface.

(2) The normal particle velocity is continuous across

the interface.

The two remaining boundary conditions depend on the frictional

conditions assumed for the interface:

A. Complete Slipping

(3) The tangential stress is zero along the interface

in the first plate

(4) The tangential stress is zero along the interface

in the second plate

B. No Slipping

(3) Tangetial stress is continuous across the
interface.

(4) Tangential particle velocity is continuous across

the interface.

C. Frictional Sliding

(3) Tangential stress is continuous across the
interface.

(4) Tangential stress is related to the magnitude of
the normal stress through a frictional law.

Here, we have analyzed only cases (A) and (B).

Note that a considerable amount of tedious algebra is involved in

deriving the equations presented in this Appendix. For the sake of

brevity, these derivations are not shown. The following relations were

helpful in the algebraic manipulations. For each material, we can write

D 
2

l1-v

Cos 2 a + v sin 2 a - cos2o (E-3)1 .
2v - 1- (D
2(l1-v) D

using the symbols defined in Subsection E.1.
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E.3 IMPACT OF PLATES 1. AND 2 (PART I)

In this subsection we are concerned only with the four initial

waves generated by the impact of Plate 1 with Plate 2, shown in Figure

E.2. We developed t, ! solution for this portion of the impact problem

* before we had settled on a consistent nomenclature. Thus, in this part

of the analysis, the impact configuration we analyzed is slightly

different from that shown in Figure E.2. This part of the analysis

treats the flyer plate being tilted so that the four wave fronts in

Figure E.2 are in the top half of the figure (A reflection about the X

X3 plane in Figure E.2). Because the final result does not appear to

depend on how the impact configuration is depicted in the problem, we

have made no effort to rederive the relations leading to the results

presented below.

E.3.1 Complete Slipping

The stresses and particle velocities behind each of the wave

fronts and the flyer plate velocity are resolved parallel and

perpendicular to the interface. For this case it is convenient to

express the equations in terms of the stresses. Using a matrix

representation, we can write these equations as

X1 0 Tangential Stress Zero in Plate 2

T 0 Tangential Stress Zero in Plate 1
[A] 2-(E-4)

X3 0 Normal Stress Continuous

T4 v 0  Normal Velocity Continuous
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here [A] is the 4 x 4 matrix

sin2a 2 2v2 - 1

cos2 2 2- 2v2  1 0

sin2aI 2v - 1

001 cos 1l 2 - 2v

[A] = (E-5)

cos2S 2  sin2o 2  -cos28 1 sin28 I

cosa 2  sin 2 cosa 1  sin2o 1

" p2 Zp2  Zpl Zsl_

The boundary conditions that go with a particular equation are indicated

in equation (E-4). Note that the indices for stress and particle

velocity identify the wave, but the indices in the components of matrix

[A] identify the plate.

in the coordinate system associated with each wave the stresses

and particle velocities are related as follows:

Plate 2: X 1  -Zp2 u1

V2 -Zs2V2 (E-6)

Plate I: % 3  -Zp u3

T 4 z Zsl V4

In these equations, the particle velocities are to be taken as absolute

quantities. Each of the above stresses refers to the stress immediately

behind the particular wave.

The sct of equations represented in equation (E-4) can be solved

. to determine the four stresses. These, in turn, can be used to

determine the particle velocities from equation (E-6).
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E.3.2 No Slipping

As before, the stresses and particle velocities are resolved

along th,2 interface. Because the tangential stresses are not zero on

both sides, the equations are not as easily uncoupled. In the matrix

representation we have

X 10 Tangential Stress Continuous

"20 Normal Stress Continuous
[A] -(E-7)

X3 0 Tangential Velocity Continuous

T4 voNormal Velocity Continuous

where the matrix [A] takes the form

2v 2 -I 2v -l

sna cos282  sin 2  -cos2S1 si2

sina 2  coso 2  sina 1  coso 1

p2 Zs2 Zp1 sl

cosa2  sino2  cosa1  sin$1
2 s2 p1s

Once the stresses are known, the particle velocities can be calculated

from the jump conditions indicated in equation (E-6).
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E.3.3 Results

To gain some insight into the effects of tilt in our problem,
,

consider the following example:

PMMA: Po - 1.185 g/cm3, Dp 3 mm/ps, D. = 1.51 mm/gs

(E-9)

LiNbO3: P0  4.64 g/cm3 , Dp = 6.75 mm/s, Ds = 4.61 mm/is

We assume the following representative values

J

vo = 0.15 mm/ps, 0 = 2 x 10- 3 radian (E-10)

Although LiNbO3 is not an isotropic solid, we treated it as such and

used the wave velocities pertinent to the crystal orientation of

interest in our work. The results are as follows:

Stress Complete Slipping No Slipping

X I  -4.775 kbar -4.776 kbar

X3 -4.778 kbar -4.778 kbar (E-11)

T2 -0.4 kbar -0.395 kbar

T4 0.097 kbar 0.105 kbar

a = 2.29, 81 = 1.15', a2 - 5.16%, 82 " 3"50

From these results we draw the following conclusions:

(1) The solution for the slipping or no-slipping cases are
nearly identical.t A significant amount of shear stress
can be generated even for small tilt angles.

.':

This does not match the experimental configuration treated in our
work.

tFowles30 reported a similar result earlier.
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(2) The normal stress values are very close to the values

predicted f or e 0*. To a first approximation,
compression stress behind the P-waves is independent of
0.

(3) To a first approximation, the magnitude of the shear
stress depends only on e and is independent of vi,

40

(4) At least for the complete slipping case, the direction
* of the shear motion can be specified a priori without

solving the entire problem. The directions indicated in
Figure E.2 are correct.

E.4 P-WAVE INCIDENT ON THE INTERFACE BETWEEN PLATES 2 AND 3
(PART II)

The compression wave generated by the impact considered in the

previous subsection, denoted as P(Il) in Figure E.2, interacts with the

interface of Plates 2 and 3. The four waves shown in Figure E.3 are

produced by this interaction. The orientation of the normal to a

particular wave front is again calculated using Snell's law; we found

S. that equation (E-2) determines all the angles in the problem including

those considered in Part III of the analysis. As before, we present the

equations in the matrix representation without presenting all the

algebraic manipulation.

E.4.1l Complete Slipping

The stresses and particle velocities are resolved along the

'Iterface.

X-7 1 cos20 2  Normal Stress Continuous

/D5
8 xlPDJ sin2a2  Tangential Stress Zero in Plate 2

[A] \p2 (-12)

X0 Tangential Stress Zero in Plate 3

1cosa2  Normal Velocity Continuous
p2

P.

~,.R A



x2
Plate 2 Plate 3

P (5)
*5~4P P(7)

S(8)

/ / S(6)

a2  

eS3

/x~/

'S Incident Wave

5--pFigure E.3. P-wave interaction with the interface. [The normals to the wave
fronts are shown with the wave fronts themselves indicated by
the short line segments intersecting the normals. The arrow ahead
of the wave front indicates the direction of wave propagation. The
arrow behind the wave front indicates the direction of particle
moin heicdn wv ste Mwv soni igr...
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where the matrix [Al is given by

cos20 2  sin2O 2  -cos2$ 3  sin2o 3

-(-- sin2 ca2  cos2 82  0 0

[A] 2(E-13)

0 0 Ds\2 n2a 3  cos25 3

cosa sn oasn

2 3

- The stresses and particle velocities are related by

Plate 2: X = pu

X7 = -Zp2u7

T= +Z5 v (E-14)

Plate 3: X5= -Z 3u5

As before, equation (E-12) is solved by determining [A] and

multiplying the right side of equation (E-12) by it. The particle

velocities are calculated from equation (E-14).
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E.4.2 No Slipping

The equations for this case were written in terms of particle

velocities

u7  -ulcosa 2  Normal Velocity Continuous

v8  -ulsina2  Tangential Velocity Continuous
[A] (E-15)

u5  +Zp2ulcos2P2  Normal Stress Continuous

D s2 sin2a2 Tangential Stress Continuous

J L p2

where (A] is given by

-cosa 2  sin8 2  -cos 3  -sino 3

3ina 2  coso 2 -sin 3  cosp 3
(. A] - (E-16)

-Zp2cos28 2  Z s2sin282  Zp3cos28 3  Zs3sin28 3

z 2sna zz D s3 sin2a3-sCS8

s2 D 2  n2 Zs2cOS 2  Zs3 D p3 n 3  -Z 3cos2 3

Multiplying both sides of Equation (E-15) by [A] - I, we obtain u7 , v8,

u5, and v6 in terms of uI. The stresses corresponding to these particle

velocities can be calculated using the jump conditions in equation

(E-14).

E.5 S-WAVE INCIDENT ON THE INTERFACE BETWEEN PLATES 2 AND 3

(PART III)

Figure E.4 shows the reflection and transmission of the shear

wave, denoted as S(2) in Subsection E.3, from the interface between

Plates 2 and 3. In accordance with the approximations set forth in

Subsection E.2, the four waves generated at the interface by S(2) are

taken to have the same propagation direction as the waves generated by

P(l) shown in Figure E.3. This procedure simplifies the derivation of

111
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X2

Plate 2 Plate 3
V

.4. P(11)
P (9)

S(12)

* Incident Wave

Figure E.4. S-wave interaction with the interface. [The normals to the wavefronts are shown with the wave fronts themselves indicated by the
short line segments intersecting the normals. The arrow ahead of
the wave front indicates the direction of wave propagation. The
arrow behind the wave front indicates the direction of particlemotion. The incident wave is the S(2) wave shown in Figure E.2.]
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the equations. The angles made by the wave front normals will be the

same as in Subsection E.4.

Except for the contributions from the incident wave, the other

terms can be written directly from Subsection E.4 by incrementing the

wave identification numbers by 4. Because the plates are the same as

those in subsection E.4, the [A] matrices will also be the same.

E.5.1 Complete Slipping

The four equations for this case are

XTll 2 sin2o 2  Normal Stress Continuous

[A] 2 - 2 cos28 2  Tangential Stress Zero in Plate 2 (E-17)
X 9  0 Tangential Stress Zero in Plate 3

T 2 sin82  Normal Velocity Continuous
10 Z2s2

where the A matrix is given by equation (E-13).

The jump conditions are given by substituting

,T 2 Z Zs2 v 2 -8

for the relation involving X, in equation (E-14). The wave

identification subscripts for the other four equations are to be

incremented by 4 to conform to Figure E.4.

E.5.2 No Slipping

The equations for this case are

-v2 sin82  Normal Velocity Continuous

v12= v2cOs82 Tangential Velocity Continous

u9 Zs2V 2 sin2$ 2  Normal Stress Continuous

vio -Zs2v 2Cos2 2  Tangential Stress Continuous
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where [A] is given by equation (E-16). The stresses are determined from

the particle velocities using equation (E-18) and the procedure

indicated above.

E.6 STRESSES AND PARTICLE VELOCITIES IN THE Xi-SYSTEM (PART IV)

In this part, the stresses and particle velocities from the

previous parts are resolved and added in the Xi-system. Because we are

interested in the gage response, we restrict our calculations to Plate

3. At the end of Part I of this analysis, the stresses and particle

velocities in Plate 3 are zero. Hence, in calculating the response of

Plate 3 we are concerned only with Parts II and III of this analysis.

As before, only the results are presented.

We use a ij to denote stresses and wm to denote particle

velocities in the Xi-system.

E.6.1 Part II Contributions

The P(5) wave is resolved in the Xi-system using a clockwise

rotation through a3 about the X3-axis. The rotation matrix is

icosa 3  -sina 3  0

P(5) Rotation Matrix = sina 3  cosa3  0 (E-20)

,L-- 0 0 1i

The S(6) wave is resolved using a clockwise rotation through 03

about the X3-axis. The rotation matrix has the same form as the one

above with 03 is substituted for a3"

The components of the stresses and particle velocities existing

at the end of Part II of this analysis are obtained by summing up the

contributions from the resolved P(5) and S(6) waves. Thus, in the

Xi-system the stresses are
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all - X5 cos203 - T6 sin2O3

22mXS(sin a3 + 3cs2a3) +'r 6sin2O3(-1

a3 3 - Q3 X5

a1 2 ' a21 m -*1/2 (Q3 - 1)X 5 sin2a3 + 'r6cas203

where

v 3

The particle velocities are given by

V 1  u5cosQ3 + v6sinO3

w2 - u5siMz3 - v6cosO3  (E-22)

-3o

In these equations the Uj, vi, ki, and Tirefer to the coordinate

system associated with the i th wave.

E.6.2 Part III Contributions

a Because waves P(9) and S(1O) have the same orientation as P(5)

and S(6), respectively, the rotation matrices resolving each of them in

the Xi-system are those used above. The expressions for the components

of arij and wm existing at the end of Part III of this analysis are

obtained by incrementing by 4 the wave identification subscripts,

appearing on the variables ui, vi, ki, and Ti, in Eqs. (E-21) and

'N (E-22).
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E.6.3 Total Contributions Existing at the End of Part III

The total stresses and particle velocities in the Ki-system are

all - cos20 3 (X5 + X9 ) - sin20 3( 6 + T10 )

a 22 - (sin2 a3 + Q3Cos
2a3)(X5 + X9) + sin28 3(r6 + '10

)

a33 - Q3 (X5 + X9 ) (E-23)

a12 . a2 1  - 1/2 (Q3 - l)(X 5 + X9 )sin2a3 
+ (r 6 + '10)cos283

a13 a 31 0

a23  a 32 -0

W, = cosa 3(u5 + u9) + sin83(v6 + v10)

w2 w sina 3 (u5 + v9) - cosO3 (v6 + v1 0) (E-24)

w3 = 0

with Q as defined above.

E.7 STRESSES AND PARTICLE VELOCITIES IN THE Xi-SYSTEM (PART V)
,4.1

Finally, the stresses and particle velocities are transformed to

the Xi-system indicated in Figure E.1. To go from the Xi-system to

the X-system involves a counter-clockwise rotation through the angle

about the XI-axis (looking at origin from the positive Xl-axis). The

rotation matrix is given by

10 0
I o

a, 0 coso sino (E-25)

0 -sinA coso

The stresses and particle velocities in the Xi-system are

, aij' - aim ajn amn (E-26)

UWm '  a V wn  (E-27)
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where the amn and wn are given in equations (E-23) and (E-24),

respectively.

We developed a program called ELPLAT* to implement the steps

outlined in this Appendix; the program closely matches the calculation

sequence indicated here. The input to this program consists of

specifying the densities and elastic wave velocities for each of the

three plates, the flyer plate velocity vo along the Xl-axis, the angles

8 and $, and the slipping condition at each interfaces. Actually, only

the second interface condition is important because the solution in

Part I is independent of the interface condition.

The analysis presented here is not exact for our experiments

because Plate 3 (LiNbO3 ) is treated as an isotropic solid. Despite this

limitation, an assessment of the tilt effects on the particular compres-

sion and shear stresses of interest can be ascertained. However, the

contribution to the other stresses cannot be determined. We have

performed preliminary work to extend our analysis to anisotropic

plates. This will be completed in a future study.

In the theoretical analysis presented in this Appendix, time is

C not included as a variable. Comparisons with time-resolved measurements

V will require a determination of the wave transit times through Plate 2.

When calculating these times, it is important to account for the wave

fronts not being parallel to the interfaces.

4

The author is grateful to T. Radzekewicz for his assistance in writing
hethe program. A copy of this program is available from the author.
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APPENDIX F

DETAILS OF MEASURED WAVE PROFILES

Details of the voltage- or current-time profiles from the different

experiments are presented here. The experimental parameters correspond-

ing to these profiles are listed in Tables I and 2 of Section 3.

119

V..



1.0

0.8

S0.6

~0.4
0

0.2

0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

TIME (ps)

Figure F.1. Voltage-time profile for experiment 1 (78-2-46).
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Figure F.2. Voltage-time profiles for experiment 2 (81-2-15).
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Figure F.3. Current-time profiles for experiment 3 (81-2-22).
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